Marvell Blog

Featuring technology ideas and solutions worth sharing

Marvell

Latest Articles

April 2nd, 2018

Understanding Today’s Network Telemetry Requirements

By Tal Mizrahi, Feature Definition Architect, Marvell

There have, in recent years, been fundamental changes to the way in which networks are implemented, as data demands have necessitated a wider breadth of functionality and elevated degrees of operational performance. Accompanying all this is a greater need for accurate measurement of such performance benchmarks in real time, plus in-depth analysis in order to identify and subsequently resolve any underlying issues before they escalate.

The rapidly accelerating speeds and rising levels of complexity that are being exhibited by today’s data networks mean that monitoring activities of this kind are becoming increasingly difficult to execute. Consequently more sophisticated and inherently flexible telemetry mechanisms are now being mandated, particularly for data center and enterprise networks.

A broad spectrum of different options are available when looking to extract telemetry material, whether that be passive monitoring, active measurement, or a hybrid approach. An increasingly common practice is the piggy-backing of telemetry information onto the data packets that are passing through the network. This tactic is being utilized within both in-situ OAM (IOAM) and in-band network telemetry (INT), as well as in an alternate marking performance measurement (AM-PM) context.

At Marvell, our approach is to provide a diverse and versatile toolset through which a wide variety of telemetry approaches can be implemented, rather than being confined to a specific measurement protocol. To learn more about this subject, including longstanding passive and active measurement protocols, and the latest hybrid-based telemetry methodologies, please view the video below and download our white paper.

WHITE PAPER, Network Telemetry Solutions for Data Center and Enterprise Networks

February 22nd, 2018

Marvell to Demonstrate CyberTAN White Box Solution Incorporating the Marvell ARMADA 8040 SoC Running Telco Systems NFVTime Universal CPE OS at Mobile World Congress 2018

By Maen Suleiman, Senior Software Product Line Manager at Marvell

As more workloads are moving to the edge of the network, Marvell continues to advance technology that will enable the communication industry to benefit from the huge potential that network function virtualization (NFV) holds. At this year’s Mobile World Congress (Barcelona, 26th Feb to 1st Mar 2018), Marvell, along with some of its key technology collaborators, will be demonstrating a universal CPE (uCPE) solution that will enable telecom operators, service providers and enterprises to deploy needed virtual network functions (VNFs) to support their customers’ demands.

The ARMADA® 8040 uCPE solution, one of several ARMADA edge computing solutions to be introduced to the market, will be located at the Arm booth (Hall 6, Stand 6E30) and will run Telco Systems NFVTime uCPE operating system (OS) with two deployed off-the-shelf VNFs provided by 6WIND and Trend Micro, respectively, that enable virtual routing and security functionalities.  The CyberTAN white box solution is designed to bring significant improvements in both cost effectiveness and system power efficiency compared to traditional offerings while also maintaining the highest degrees of security.

CyberTAN white box solution incorporating Marvell ARMADA 8040 SoC

 

The CyberTAN white box platform is comprised of several key Marvell technologies that bring an integrated solution designed to enable significant hardware cost savings. The platform incorporates the power-efficient Marvell® ARMADA 8040 system-on-chip (SoC) based on the Arm Cortex®-A72 quad-core processor, with up to 2GHz CPU clock speed, and Marvell E6390x Link Street® Ethernet switch on-board. The Marvell Ethernet switch supports 10G uplink and 8 x 1GbE ports along with integrated PHYs, four of which are auto-media GbE ports (combo ports).

The CyberTAN white box benefits from the Marvell ARMADA 8040 processor’s rich feature set and robust software ecosystem, including:

  • both commercial and industrial grade offerings
  • dual 10G connectivity, 10G Crypto and IPSEC support
  • SBSA compliancy
  • Arm TrustZone support
  • broad software support from the following: UEFI, Linux, DPDK, ODP, OPTEE, Yocto, OpenWrt, CentOS and more

In addition, the uCPE platform supports Mini PCI Express (mPCIe) expansion slots that can enable Marvell advanced 11ac/11ax Wi-Fi or additional wired/wireless connectivity, up to 16GB DDR4 DIMM, 2 x M.2 SATA, one SATA and eMMC options for storage, SD and USB expansion slots for additional storage or other wired/wireless connectivity such as LTE.

At the Arm booth, Telco Systems will demonstrate its NFVTime uCPE operating system on the CyberTAN white box, with zero-touch provisioning (ZTP) feature. NFVTime is an intuitive NFVi-OS that facilitates the entire process of deploying VNFs onto the uCPE, and avoids the complex and frustrating management and orchestration activities normally associated with putting NFV-based services into action. The demonstration will include two main VNFs:

  • A 6WIND virtual router VNF based on 6WIND Turbo Router which provides high performance, ready-to-use virtual routing and firewall functionality; and
  • A Trend Micro security VNF based on Trend Micro’s Virtual Function Network Suite (VNFS) that offers elastic and high-performance network security functions which provide threat defense and enable more effective and faster protection.

Please contact your Marvell sales representative to arrange a meeting at Mobile World Congress or drop by the Arm booth (Hall 6, Stand 6E30) during the conference to see the uCPE solution in action.

February 5th, 2018

Marvell SoC Technology Underpins Powerful pfSense Secure Gateway

By Maen Suleiman, Senior Software Product Line Manager at Marvell

Marvell’s ground-breaking ARMADA® 38x processor series continues to see momentum in integration into new network and security designs. Most recently, the ARMADA 385 processor has been incorporated into Netgate’s new SG-3100 product offering.

Netgate’s objective with the SG-3100 was to bring to market an entry-level secure gateway solution that offered substantially more horsepower than competing products in the same price range. The target criteria for the new design were:

  • Significantly greater performance
  • A broader range of functionality
  • Flexible configuration to suit customers’ particular needs

Marvell’s engineering team was pleased to collaborate with Netgate on this ambitious project.

Figure 1: Netgate SG-3100 powered by Marvell ARMADA 385 Processor

 

The SG-3100 exhibits a high degree of flexibility and can be employed as a security firewall, LAN, router or WAN router, or VPN solution. It can also act as a DHCP server or DNS server, as well as providing intrusion detection system (IDS) and intrusion prevention system (IPS) capabilities. This extremely configurable unit comes equipped with 8GB eMMC Flash data storage or two m.2 SATA-based solid-state drives (SSDs), and also supports the LTE standard. Thanks to its Marvell® 88E6141 4-port switched LAN interface, the compact, cost-effective product easily facilitates bridging multiple wired and wireless networks.

Several factors drove Netgate’s decision to use Marvell’s ARMADA 385, starting with the ARMADA 38x ecosystem, which includes the ARMADA 38x ClearFog community board from SolidRun, and the ARMADA 38x FreeBSD port developed by Semihalf. Additionally, an increasing number of pfSense users had requested access to a board that provided three Ethernet ports, especially for dual-WAN operation. The ARMADA 385’s extensive embedded connectivity satisfies this need.

Based on the Arm® Cortex®-A9 topology, the ARMADA 385 system-on-chip (SoC) at the heart of the SG-3100 provides highly effective, dual-core processing capabilities. The SoC has a total of three Ethernet ports – two that support 1 Gbps data rates and a third capable of supporting either 2.5 Gbps or 1 Gbps. In the SG-3100 design, the ARMADA 385 is accompanied by Marvell’s 88E6141 multi-port Ethernet switch, which also supports 2.5Gbps operation through one of its ports.

The Netgate SG-3100 runs at 1.6GHz and is ideal for small offices and domestic environments. And thanks to the constituent IC technology, this solution packs serious throughput at a very compelling price.

 

January 29th, 2018

Marvell Named a Top 100 Global Innovator for the Sixth Consecutive Year

By Kelvin Vivian, Director of Intellectual Property

The term ‘innovation’ is frequently used in business today. For many, the term means providing ideas out of the blue, which lead to mind blowing discoveries and achievements.

While this might be the perceived outcome of innovation, the reality is that true innovation can arise in a variety of different forms and can have any sizeable impact, and a healthy dose of creativity and idea sharing must be encouraged if businesses are to effectively harness the innovative potential of its employees.

At Marvell, we pride ourselves on working together collaboratively and creatively and this enables employees to be the most innovative versions of themselves, and such is what largely contributes to our sixth consecutive year of inclusion in the Clarivate Analytics Top 100 Global Innovators list.

Placement on the list has become the standard measure for innovation across the world and is recognized as a significant achievement. The award itself is based in part on global reach — we hold more than 9,000 patents worldwide — grant success rates and influence of patented technology, and it serves as a testament to Marvell’s culture of innovation and commitment to providing differentiated, breakthrough technology solutions.

While inclusion on this list provides a celebratory point of reflection for all of us at Marvell, it also is a reminder of the work that lays ahead of us and our colleagues across industry who, while competing, also share a common passion and goal, which simply put – is to make technology that makes life better. And in today’s market especially, it’s more important than ever that we and our partners continue to push the boundaries of innovation at every turn. As the physicist Albert Einstein said, “You can’t solve a problem on the same level that it was created. You have to rise above it to the next level.”

So while we extend our congratulations to colleagues and competitors alike, without whom there would be no yardstick to measure ourselves by and no goal to aim for; we can’t wait to see what new innovations and types of critical and creative thinking this year will bring.

See you all on the other side!

January 23rd, 2018

New Brew: Latest MACCHIATObin Community Boards are Able to Address Much Wider Scope of Developer Requirements

By Maen Suleiman, Senior Software Product Line Manager at Marvell

Following the success of the MACCHIATObin® development platform, which was released back in the spring, Marvell and technology partner SolidRun have now announced the next stage in the progression of this hardware offering. After drawing on the customer feedback received, a series of enhancements to the original concept have subsequently been made, so that these mini-ITX boards are much more optimized for meeting the requirements of engineers.

Marvell and SolidRun announce the availability of two new MACCHIATObin products that will supersede the previous release. They are the MACCHIATObin Single Shot and the MACCHIATObin Double Shot boards.

As before, these mini-ITX format networking community boards both feature the powerful processing capabilities of Marvell’s ARMADA® 8040 system-on-chip (SoC) and stay true to the original objective of bringing an affordable Arm-based development resource with elevated performance to the market. However, now engineers have a choice in terms of how much supporting functionality comes with it – thus making the platform even more attractive and helping to reach a much wider audience.

Figure 1: MACCHIATObin Single Shot (left) and MACCHIATObin Double Shot (right)

The more streamlined MACCHIATObin Single Shot option presents an entry level board that should appeal to engineers with budgetary constraints. This has a much lower price tag than the original board, coming in at just $199. It comes with two 10G SFP+ connectors without the option of two 10G copper connectors, and also doesn’t come with default DDR4 DIMM as its predecessor, but still has a robust 1.6GHz processing speed.

This is complemented by the higher performance MACCHIATObin Double Shot. This unleashes the full 2GHz of processing capacity that can be derived from the ARMADA 8040, which relies on a 64-bit quad-core Arm Cortex-A72 processor core. 4GB of DDR4 DIMM is included. At only $399 it represents great value for money – costing only slightly more than the original, but with extra features and stronger operational capabilities being delivered. It comes with additional accessories that are not in the Single Shot package – including a power cable and a microUSB-to-USB cable.

Both the Single Shot and Double Shot versions incorporate heatsink and fan mechanisms in order to ensure that better reliability is maintained through more effective thermal management. The fan has an airflow of 6.7 cubic feet per minute (CFM) with low noise operation. A number of layout changes have been implemented upon the original design to better utilize the available space and to make the board more convenient for those using it. For example, the SD card slot has been moved to make it more accessible and likewise the SATA connectors are now better positioned, allowing easier connection of multiple cables. The micro USB socket has also been relocated to aid engineers.

A 3-pin UART header has been added to the console UART (working in parallel with FTDI USB-to-UART interface IC). This means that developers now have an additional connectivity option that they can utilize, making the MACCHIATObin community board more suitable for deployment in remote locations or where it needs to interface with legacy equipment (that do not have a USB port). The DIP switches have been replaced with jumpers, which again gives the boards greater versatility. The JTAG connector is not assembled by default, the PCI Express (PCIe) x4 slot has been replaced with an open PCIx4 slot so that it can accommodate a wider variety of different board options (like x8 and x16, as well as x4 PCIe) such as graphics processor cards, etc. to be connected. Furthermore, the fixed LED emitter has been replaced by one that is general purpose input/output (GPIO) controlled, thereby enabling operational activity to be indicated.

The fact that these units have the same form factor as the original, means that they offer a like-for-like replacement for the previous model of the MACCHIATObin board. Therefore existing designs that are already using this board can be upgraded to the higher performance MACCHIATObin Double Shot version or conversely scaled down to the MACCHIATObin Single Shot in order to reduce the associated costs.

Together the MACCHIATObin Double Shot and Single Shot boards show that the team at Marvell are always listening to our customer base and responding to their needs. Learning from the first MACCHIATObin release, we have been able to make significant refinements, and consequently develop two new very distinct product offerings. One that addresses engineers that are working to a tight budget, for which the previous board would not have been viable, and the other for engineers that want to boost performance levels.

 

 

 

 

January 11th, 2018

Ethernet Set to Bring About Radical Shift in How Automotive Networks are Implemented

By Christopher Mash, Senior Director of Automotive Applications & Architecture, Marvell

The in-vehicle networks currently used in automobiles are based on a combination of several different data networking protocols, some of which have been in place for decades. There is the controller area network (CAN), which takes care of the powertrain and related functions; the local interconnect network (LIN), which is predominantly used for passenger/driver comfort purposes that are not time sensitive (such as climate control, ambient lighting, seat adjustment, etc.); the media oriented system transport (MOST), developed for infotainment; and FlexRay™ for anti-lock braking (ABS), electronic power steering (EPS) and vehicle stability functions.

As a result of using different protocols, gateways are needed to transfer data within the infrastructure. The resulting complexity is costly for car manufacturers. It also affects vehicle fuel economy, since the wire harnessing needed for each respective network adds extra weight to the vehicle. The wire harness represents the third heaviest element of the vehicle (after the engine and chassis) and the third most expensive, too. Furthermore, these gateways have latency issues, something that will impact safety-critical applications where rapid response is required.

The number of electronic control units (ECUs) incorporated into cars is continuously increasing, with luxury models now often having 150 or more ECUs, and even standard models are now approaching 80-90 ECUs. At the same time, data intensive applications are emerging to support advanced driver assistance system (ADAS) implementation, as we move toward greater levels of vehicle autonomy. All this is causing a significant ramp in data rates and overall bandwidth, with the increasing deployment of HD cameras and LiDAR technology on the horizon.

As a consequence, the entire approach in which in-vehicle networking is deployed needs to fundamentally change, first in terms of the topology used and, second, with regard to the underlying technology on which it relies.

Currently, the networking infrastructure found inside a car is a domain-based architecture. There are different domains for each key function – one for body control, one for infotainment, one for telematics, one for powertrain, and so on. Often these domains employ a mix of different network protocols (e.g., with CAN, LIN and others being involved).

As network complexity increases, it is now becoming clear to automotive engineers that this domain-based approach is becoming less and less efficient. Consequently, in the coming years, there will need to be a migration away from the current domain-based architecture to a zonal one.

A zonal arrangement means data from different traditional domains is connected to the same ECU, based on the location (zone) of that ECU in the vehicle. This arrangement will greatly reduce the wire harnessing required, thereby lowering weight and cost – which in turn will translate into better fuel efficiency. Ethernet technology will be pivotal in moving to zonal-based, in-vehicle networks.

In addition to the high data rates that Ethernet technology can support, Ethernet adheres to the universally-recognized OSI communication model. Ethernet is a stable, long-established and well-understood technology that has already seen widespread deployment in the data communication and industrial automation sectors. Unlike other in-vehicle networking protocols, Ethernet has a well-defined development roadmap that is targeting additional speed grades, whereas protocols – like CAN, LIN and others – are already reaching a stage where applications are starting to exceed their capabilities, with no clear upgrade path to alleviate the problem.

Future expectations are that Ethernet will form the foundation upon which all data transfer around the car will occur, providing a common protocol stack that reduces the need for gateways between different protocols (along with the hardware costs and the accompanying software overhead). The result will be a single homogeneous network throughout the vehicle in which all the protocols and data formats are consistent. It will mean that the in-vehicle network will be scalable, allowing functions that require higher speeds (10G for example) and ultra-low latency to be attended to, while also addressing the needs of lower speed functions. Ethernet PHYs will be selected according to the particular application and bandwidth demands – whether it is a 1Gbps device for transporting imaging sensing data, or one for 10Mbps operation, as required for the new class of low data rate sensors that will be used in autonomous driving.

Each Ethernet switch in a zonal architecture will be able to carry data for all the different domain activities. All the different data domains would be connected to local switches and the Ethernet backbone would then aggregate the data, resulting in a more effective use of the available resources and allowing different speeds to be supported, as required, while using the same core protocols. This homogenous network will provide ‘any data, anywhere’ in the car, supporting new applications through combining data from different domains available through the network.

Marvell is leading the way when it comes to the progression of Ethernet-based, in-vehicle networking and zonal architectures by launching, back in the summer of 2017, the AEC-Q100-compliant 88Q5050 secure Gigabit Ethernet switch for use in automobiles. This device not only deals with OSI Layers 1-2 (the physical layer and data layer) functions associated with standard Ethernet implementations, it also has functions located at OSI Layers 3,4 and beyond (the network layer, transport layer and higher), such as deep packet inspection (DPI). This, in combination with Trusted Boot functionality, provides automotive network architects with key features vital in ensuring network security.

January 11th, 2018

Storing the World’s Data

By Marvell, PR Team

Storage is the foundation for a data-centric world, but how tomorrow’s data will be stored is the subject of much debate. What is clear is that data growth will continue to rise significantly. According to a report compiled by IDC titled ‘Data Age 2025’, the amount of data created will grow at an almost exponential rate. This amount is predicted to surpass 163 Zettabytes by the middle of the next decade (which is almost 8 times what it is today, and nearly 100 times what it was back in 2010). Increasing use of cloud-based services, the widespread roll-out of Internet of Things (IoT) nodes, virtual/augmented reality applications, autonomous vehicles, machine learning and the whole ‘Big Data’ phenomena will all play a part in the new data-driven era that lies ahead.

Further down the line, the building of smart cities will lead to an additional ramp up in data levels, with highly sophisticated infrastructure being deployed in order to alleviate traffic congestion, make utilities more efficient, and improve the environment, to name a few. A very large proportion of the data of the future will need to be accessed in real-time. This will have implications on the technology utilized and also where the stored data is situated within the network. Additionally, there are serious security considerations that need to be factored in, too.

So that data centers and commercial enterprises can keep overhead under control and make operations as efficient as possible, they will look to follow a tiered storage approach, using the most appropriate storage media so as to lower the related costs. Decisions on the media utilized will be based on how frequently the stored data needs to be accessed and the acceptable degree of latency. This will require the use of numerous different technologies to make it fully economically viable – with cost and performance being important factors.

There are now a wide variety of different storage media options out there. In some cases these are long established while in others they are still in the process of emerging. Hard disk drives (HDDs) in certain applications are being replaced by solid state drives (SSDs), and with the migration from SATA to NVMe in the SSD space, NVMe is enabling the full performance capabilities of SSD technology. HDD capacities are continuing to increase substantially and their overall cost effectiveness also adds to their appeal. The immense data storage requirements that are being warranted by the cloud mean that HDD is witnessing considerable traction in this space.

There are other forms of memory on the horizon that will help to address the challenges that increasing storage demands will set. These range from higher capacity 3D stacked flash to completely new technologies, such as phase-change with its rapid write times and extensive operational lifespan. The advent of NVMe over fabrics (NVMf) based interfaces offers the prospect of high bandwidth, ultra-low latency SSD data storage that is at the same time extremely scalable.

Marvell was quick to recognize the ever growing importance of data storage and has continued to make this sector a major focus moving forwards, and has established itself as the industry’s leading supplier of both HDD controllers and merchant SSD controllers.

Within a period of only 18 months after its release, Marvell managed to ship over 50 million of its 88SS1074 SATA SSD controllers with NANDEdge™ error-correction technology. Thanks to its award-winning 88NV11xx series of small form factor DRAM-less SSD controllers (based on a 28nm CMOS semiconductor process), the company is able to offer the market high performance NVMe memory controller solutions that are optimized for incorporation into compact, streamlined handheld computing equipment, such as tablet PCs and ultra-books. These controllers are capable of supporting reads speeds of 1600MB/s, while only drawing minimal power from the available battery reserves. Marvell offers solutions like its 88SS1092 NVMe SSD controller designed for new compute models that enable the data center to share storage data to further maximize cost and performance efficiencies.

The unprecedented growth in data means that more storage will be required. Emerging applications and innovative technologies will drive new ways of increasing storage capacity, improving latency and ensuring security. Marvell is in a position to offer the industry a wide range of technologies to support data storage requirements, addressing both SSD or HDD implementation and covering all accompanying interface types from SAS and SATA through to PCIe and NMVe.

Check out www.marvell.com to learn more about how Marvell is storing the world’s data.