Marvell Blog

Featuring technology ideas and solutions worth sharing

Marvell

Archive for the ‘Automotive’ Category

June 20th, 2017

Autonomous Vehicles and Digital Features Make the Car of the Future a “Data Center on Wheels”

By Donna Yasay

Advanced digital features, autonomous vehicles and new auto safety legislation are all amongst the many “drivers” escalating the number of chips and technology found in next-generation automobiles.  The wireless, connectivity, storage and security technologies needed for the internal and external vehicle communications in cars today and in the future, leverage technologies used in a data center—in fact, you could say the automobile is becoming—a Data Center on Wheels.

Here are some interesting data points supporting the evolution of the Data Center on Wheels:

  • The National Highway Traffic Safety Administration (NHTSA) mandates that by May 2018, all new cars in the U.S. to have backup cameras. The agency reports that half of all new vehicles sold today already have backup cameras, showing widespread acceptance even without the NHTSA mandate.
  • Some luxury brands provide panoramic 360-degree surround views using multiple cameras. NVIDIA, which made its claim to fame in graphics processing chips for computers and video games, is a leading provider in the backup and surround view digital platforms, translating its digital expertise into the hottest of new vehicle trends. At the latest 2017 International CES, NVIDIA showcased its latest NVIDIA PX2, an Artificial Intelligence (AI) Car Computer for Self-Driving Vehicles, which enables automakers and their tier 1 suppliers to accelerate production of automated and autonomous vehicles.
  • According to an Intel presentation at CES reported in Network World, just one autonomous car will use 4,000GB (or 40 Terabytes) of data per day.
  • A January study by Strategy Analytics reported that by 2020, new cars are expected to have approximately 1,000 chips per vehicle.

Advanced Driver Assist Systems (ADAS), In-Vehicle Infotainment (IVI), autonomous vehicles—will rely on digital information streamed internally within the vehicle and externally from the vehicle to other vehicles or third-party services via chips, sensors, network and wireless connectivity.  All of this data will need to be processed, stored or transmitted seamlessly and securely, because a LoJack® isn’t necessarily going to help with a car hack.

This is why auto makers are turning to the high tech and semiconductor industries to support the move to more digitized, automated cars. Semiconductor leaders in wireless, connectivity, storage, and networking are all being tapped to design and manage the Data Center on Wheels.  For example, Marvell recently announced the first automotive grade system-on-chip (SoC) that integrates the latest Wi-Fi, Bluetooth, vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) capabilities.  Another technology product being offered for automotive use is the InnoDisk SATA 3ME4 Solid-State Drive (SSD) series. Originally designed for industrial systems integrations, these storage drives can withstand the varied temperature ranges of a car, as well as shock and vibration under rugged conditions. Both of these products integrate state-of-the-art encryption to not only keep and store information needed for data-driven vehicles, but keep that information secure from unwanted intrusion.

Marvell and others are working to form standards and adapt secure digital solutions in wireless, connectivity, networking and storage specifically for the automobile, which is even more paramount in self-driving vehicles. Current data center standards, such as Gigabit Ethernet are being developed for automobiles and the industry is stepping up to help make sure that these Data Centers on Wheels are not only safe, but secure.

April 27th, 2017

Challenges of Autonomous Vehicles: How Ethernet in Automobiles Can Overcome Bandwidth Issues in Self-Driving Vehicles

By Nick Ilyadis

Drivers are already getting used to what used to be “cool new features,” that have now become “can’t live without” technologies, such as the backup camera, blind spot alert or parking assist. Each of these technologies stream information, or data, within the car, and as automotive technology evolves, more and more features will be added. But when it comes to autonomous vehicles, the amount of technology and data streams coming into the car to be processed increases exponentially. Autonomous vehicles gather multiple streams of information/data from sensors, radar, radios, IR sensors and cameras. This goes beyond the current Advanced Driver Assist Systems (ADAS) or In-Vehicle Infotainment (IVI). The autonomous car will be acutely aware of its surroundings running sophisticated algorithms that will make decisions in order to drive the vehicle. However, self-driving cars will also be processing vehicle-to-vehicle communications, as well as connecting to a number of external devices that will be installed in the highway of the future, as automotive communication infrastructures develop. All of these features and processes require bandwidth-and a lot of it: Start the car; drive; turn; red light, stop; – PEDESTRIAN – BRAKE! This would be a very bad time for the internal vehicle networks to run out of bandwidth.

Add to the driving functions the simultaneous infotainment streams for each passenger, vehicle Internet capabilities, etc. and the current 100 megabits-per-second (mbps) 100BASE-T1 Ethernet bandwidth used in automotive, is quickly strained. This is paving the way (pun intended) for 1000BASE-T1 Gigabit Ethernet (GbE) for automotive networks. Ethernet has long been the economical volume workhorse with millions of miles of cabling in buildings the world over. Therefore, the IEEE 802.3 Ethernet Working Group has endorsed iGbE as the next network bandwidth standard in automotive.

From Car-jacking to Car-hacking—Security Critical

Another major factor for automotive networking is security. In addition to the many technology features and processes needed for driving and entertainment, security is a major concern for cars, especially autonomous cars.  Science Fiction movies where cars are hacked overriding the driver’s capabilities are scary enough, but in real life, would be beyond a nightmare. Automotive security to prevent spyware, whether planted from a rogue mechanic or roving hack, will require strong authentication to protect privacy, and passenger safety. Cars of the future will be able to reject any devices added that aren’t authenticated, as well as any external intrusion through the open communication channels of the vehicle.

This is why companies like Marvell, have taken a leadership role with organizations like IEEE to help create open standards, such as GbE for automotive, to keep moving automotive technologies forward. (See IEEE 2014 Automotive Day presentation by Alex Tan on the Benefits of Designing 1000BASE-T1 into Automotive Architectures http://standards.ieee.org/events/automotive/2014/02_Designing_1000BASE-T1_Into_Automotive_Architectures.pdf.)

Technology to Drive Next-Generation Automotive Networking

Marvell’s Automotive Ethernet Networking technology is capable of taking what used to be the separate domains of the car — infotainment, driver assist, body electronics and control — and connecting them together to provide a high-bandwidth standards-based data backbone for the vehicle. For example, the Marvell 88Q2112 is the industry’s first 1000BASE-T1 automotive Ethernet PHY transceiver compliant with the IEEE 802.3bp 1000BASE-T1 standard. The Marvell 88Q2112 supports the market’s highest in-vehicle connectivity bandwidth and is designed to meet the rigorous EMI requirements of an automotive system. The 1000BASE-T1 standard allows high-speed and bi-directional data traffic and in-vehicle uncompressed 720p30 camera video for multiple HD video streams, including 4K resolution, all over a lightweight, low-cost single pair cable. The Marvell 88Q1010 low-power PHY device supports 100BASE-T1 and compressed 1080p60 video for infotainment, data transport and camera systems.  And finally to round out its automotive networking solutions, Marvell also offers a series of 7-port Ethernet switches.

Harnessing the low cost and high bandwidth of Ethernet brings many advantages to next-generation automotive architecture, including the flexibility to add new applications. In other words, allowing the possibility to build for features that haven’t even been thought up yet. Because while the car of the future may drive itself, it takes a consortium of technology leaders to pave the way.

# # #

 

 

 

March 1st, 2017

Marvell at the Forefront of Connecting the Cars of Tomorrow, Today

By Alex Tan

When you sit in a car today, the focal point of the interior is likely an infotainment system. From displaying vehicle diagnostics to parking assistance to enabling multimedia streaming and additional controls such as phone calls, navigation, etc., the infotainment system has become the touchpoint of the in-vehicle connectivity experience.

In order for drivers to take full advantage of these advanced features, internal vehicle data networks need to provide high bandwidth and seamless connectivity so these technologies can effectively communicate with each other. However, with multiple in-vehicle systems using different interfaces and connectivity technologies, how can we bridge the communication to get them to speak the same language?

The IEEE’s Ethernet standards act as the connectivity backbone to seamlessly link the different domains of the car such as infotainment and Advanced Driver Assistance Systems (ADAS). Marvell is proud to have played an instrumental role in the development of the IEEE 802.3bp 1000BASE-T1 PHY standard which enables data between in-vehicle systems to be distributed over a flexible, low cost and high bandwidth network. In October 2015, Marvell introduced the 88Q2112 automotive Ethernet physical layer (PHY) transceiver, the industry’s first 1000BASE-T1 automotive Ethernet PHY transceiver based on the IEEE’s draft 1000BASE-T1 spec. Leveraging our advanced wireless and Ethernet technology solutions, the 1000BASE-T1 solution supports uncompressed HD video, ideal for distributing camera and sensor data in ADAS applications. In the infotainment space, gigabit Ethernet over a single unshielded twisted pair copper cable is a logical solution for transporting audio, video and voice data at a higher data rate and resolution. Marvell’s 88Q2112 PHY transceiver enables automakers to use one Ethernet switch to connect the multiple advanced features of tomorrow’s cars. Furthering our commitment to automotive innovation, in April 2016 we opened the Marvell Automotive Center of Excellence (ACE), a first-of-its-kind automotive networking technology development center. Located in Ettlingen, Germany, ACE aims to expand development and education efforts to advance the architecture of future connected, intelligent cars.

We showcased Marvell’s advanced auto connectivity solutions at the 2016 IEEE-SA Ethernet & IP @ Automotive Technology Day (E&IP@ATD) in Paris this past September, demonstrating how our technology supports multiple HD video streams with up to 4K resolution. Covering the exciting activities at E&IP@ATD, Tadashi Nezu of Nikkei wrote about our automotive connectivity leadership, noting that Marvell is rapidly coming to the forefront of the market. Nezu also lauded the Company for its early Ethernet development efforts, noting how Marvell quickly developed a solution compliant to the draft IEEE 802.3bp 1000BASE-T1 standard, before the specifications were even finalized.

Earlier this month, we presented our solutions at the heart of the world’s automotive development at the 3rd annual Automotive Ethernet Congress in Munich. Manfred Kunz, head of development at the ACE, spoke about automotive Ethernet security, while Christopher Mash, senior manager of automotive system architecture and field applications, co-presented with Bosch and Continental who shared their experience with the new 1000BASE-T1 technology. We showcased several automotive Ethernet solutions across nine customer booths, including the world’s first 1000Base-T1 Automotive Ethernet system, industry-leading intelligent security on the new 88Q5050 switch and a new platform demonstrating Marvell’s 10Gb capability for automotive.

The event was a success, drawing over 700 attendees, as well as speakers and exhibitors from over 20 countries.

Automotive Ethernet Congress, Munich, Germany

Automotive Ethernet Congress, Munich, Germany

As automotive technological developments continue to advance rapidly and data continues to play a fundamental role in advancing the future of connected cars, we look forward to continue innovating and collaborating with our auto partners to further accelerate car connectivity.

August 2nd, 2016

Marvell Delivers Industry’s First IEEE Gigabit Ethernet For Automotive

By Anil Gercekci

High-Speed Networking Becomes a Reality For Automotive
Creating New Consumer Features

Marvell First to Deliver Samples to Auto Manufacturers

With the availability of high-speed LTE networks and the thrust toward autonomous driving, car companies are working on a structured approach to high-speed data distribution to and within vehicles. Today, Gigabit Ethernet over a single pair of twisted-pair copper wire has become a reality for the automotive industry paving the way for high-speed networking within a vehicle. In November of last year, Marvell delivered the first samples based on the IEEE 1000BASE-T1 pre-standard specification for verification of performance in vehicles. The 1000BASE-T1 standard allows high-speed and bi-directional data traffic over light-weight, low-cost, single-pair cable harnesses. This enables car companies to create a whole new array of exciting automotive features and benefits. Early chip samples from Marvell allow auto makers the ability to evaluate the performance of this new standard and identify possible issues early in the application development process, prior to production, to accelerate time to market.

 

Gigabit-Ethernet-Chart

 

Industry Standards Organizations Paving the Way to Seamless Automotive Wireless Communications

Simultaneously, a number of industry standards organizations are working on automotive-specific wireless standards that will enable seamless internal and external communications with vehicles to enable cloud-based applications. With LTE standards enabling higher than 100Mbps data capability, LTE connectivity will require high-speed links in line with 100BASE-T1 or 1000BASE-T1 Ethernet capabilities within the vehicle, depending on the actual real throughput available to the user from the network. As carrier network coverage and data billing rates become accepted by consumers, cloud-based applications for automotive will allow large data transfers that will enable not only wider infotainment, but concierge and navigation applications, plus remote diagnostics with secure over-the-air (OTA) updates. (Won’t it be nice to know when you’re pulled over on the side of the highway on vacation, exactly what is wrong with your car?) Such mechanisms will also enable security and accelerated fleet management for business and commercial enterprises that can help lower the cost of maintenance, while increasing customer satisfaction by keeping drivers up-to-date with the latest cloud-based data services.

A History of Firsts

Marvell has a history of actively participating in the IEEE standards development process. In 2011, Marvell was a key driver in the Call For Interest (CFI) at IEEE for an Automotive-specific Gigabit Ethernet PHY. This CFI received unanimous support (a relatively rare event in IEEE) and now the new IEEE 802.1bp standard is set to be ratified in 2016. In the meantime, Marvell has already begun sampling pre-standard parts to the industry for testing. The availability of parts has sparked remarkable interest and activity in testing and developing new applications for high-speed Ethernet.

Will Automotive Become the Largest IT Employer In the Near Future?

The introduction of Automotive-specific Gigabit Ethernet can provide the backbone for enhanced connectivity applications. The automotive industry is rapidly adopting Ethernet as a key enabler, not only for its superior price/performance, but also because it supports the Open Systems Interconnection (OSI) model. The OSI model allows for the rapid deployment of applications and services. Using this layered approach, a specific PHY technology, which met both the light weight and low EMC requirements, had to be developed that was consistent with all the existing upper layers of the OSI model. This gives the benefits of being able to leverage and reuse existing developments in layers above the PHY level. It is amazing to think that with this unprecedented potential expansion of automotive connectivity and its applications, it is conceivable that the automotive industry could become the world’s largest employer of IT experts in the coming years.

More to Come
In addition to a long history of WiFi and Bluetooth combo products in automotive, Marvell is enabling WiFi technology to become part of this external connectivity by developing 802.11ai technology that allows for Fast Initial Link Setup (FILS) that provides opportunistic access to base stations whenever they become available as the car drives at high speed. In addition, 802.11p products will enable short-range wireless connectivity for collision avoidance or pedestrian/cyclist detection, applications that demand quick response and are not possible via current Light Detection and Ranging (LIDAR) and LTE technologies. With these wireless technologies placed in the roof of the car, Ethernet plays an important role for high-speed communication to and within the vehicle. By delivering early samples based on the latest developing industry standards, Marvell is helping to “drive” new applications in automotive connectivity technology.

May 19th, 2016

Automotive Center of Excellence Now Open in Ettlingen, Germany

By Alex Tan

Marvell Automotive Center

Marvell’s Automotive Center of Excellence, the first-of-its-kind automotive networking technology development center, recently opened in Ettlingen, Germany. Due to the rapid advancement of automotive technological developments in recent years, the next generation of cars needs a new architecture to run a wide array of features—for example, full driver assist, ultra high-definition (HD) displays and over-the-air updates. Marvell’s objectives are to provide access to the latest innovative technologies, (link: http://www.marvell.com/solutions/automotive/), work closely with customers and partners, and drive the automotive industry forward more quickly and efficiently.

The grand opening event elicited great excitement, and Marvell was honored to welcome many distinguished guests including Wolfang Erhard, Chief of Business Development from the Mayor’s office in Ettlingen; Klaus Oertel, from Hanser Automotive; Ingo Kuss, from Elektronik Automotive; and Thomas Zimmer from BNN. Philip Poulidis, Vice President and General Manager, Internet of Things, Automotive and Multimedia Business Units at Marvell along with Ian Riches, Director of the Global Automotive Practice at Strategy Analytics provided the keynote speech.

Given Marvell’s history of dedication and innovative design, the company knows that understanding advanced technologies such as, Audio Video Bridging, Time Sensitive Networking and singe pair Ethernet standards—is vital to further the connected car industry. A dedicated team of engineers will utilize their knowledge to expand development and education efforts in these areas with Marvell and its customers to advance the architecture of future, connected cars. The engineering team is responsible for automotive products that include switch, end-node system-on-chips, gateways and automotive software.

Marvell continues to market innovative technologies that will shape the future of the automotive industry, and with its Automotive Center of Excellence in Germany is better positioned to drive new automotive designs and technologies forward.

May 17th, 2016

Marvell Drives Automotive Connectivity with Industry’s first 1000BASE-T1 Development Platform with Automotive Connectors

By Alex Tan

Automobile Close Up, Marvell Solutions

With OEMs racing to offer connected car services, Marvell has developed a new Ethernet reference platform integrated with TE Connectivity’s (TE) MATEnet modular and scalable connectors for automotive Ethernet, to enable a faster time-to-market for Gigabit Ethernet in automotive systems. The new development platform supports audio bridging (AVB) switching solutions with 100BASE-T1 and 1000BASE-T1 Ethernet physical layer (PHY) capability. Manufacturers are now able to quickly prototype automotive systems with Gigabit Ethernet for electrical and electronic architectures.

The next generation of vehicle technology requires a high-speed, resilient data infrastructure that can operate in the robust conditions of the automobile. Applications such as autonomous driving, advanced safety features and immersive infotainment systems are driving these new architectures. Combining Marvell’s expertise in network and Ethernet, with TE’s experience in providing real world automotive connector and cable systems, this development platform allows vehicle architects to begin designing these systems for mass production.

This new reference platform includes support for the AVB networking standards of the AVnu Alliance’s certification test subgroup and also supports Stream Reservation Protocol to provide end-to-end management of resource reservations for automotive data streams. In addition, Marvell’s Ethernet PHY transceivers (88Q2112 100BASE-T1 PHY and 88Q1010 100BASE-T1 PHY) enable high definition and uncompressed video, high speed links, between domains to support connected and autonomous driving systems and the fastest system bring up from power down. Additional features and benefits include time sensitive networking technology to support time critical control applications, vehicle-to-vehicle Wi-Fi communication to improve safety and reduce response times using real time alerts regarding traffic and road alerts. The 88Q2112 is the industry’s first 1000BASE-T1 automotive Ethernet PHY transistor that is compliant with the draft IEEE 802.3bp 1000BASE-T1 standard.

Marvell’s commitment to extend connectivity to the automobile includes a number of solutions to meet the needs of designers for the cars of the future.

July 21st, 2015

Glimpses of the Connected Car of the Future

By Alex Tan

We’ve already seen integrated Bluetooth and Wi-Fi in cars and applications integrated into the user console. We’ve also seen Google’s fleet of prototype autonomous or “self-driving” cars. But a car that can fix itself? That’s just one of the many new transformations on the horizon when the Internet of Things meets the Connected Car. We will explore how connectivity will drive transformation in automotive infotainment technology, much like smartphones transformed telecommunications.

The idea of a connected car is all about making data available, both within the car and with the external world. For example, car manufacturers will be able to improve automobile quality by getting real-time data from individual vehicles and providing corrective updates when problems are identified. In addition, auto manufacturers are looking at completely new ways to use connectivity to make vehicles safer or improve the functionality of the car after it leaves the dealership. Tesla is a good example of this having recently introduced a firmware update that actually added new features, such as adaptive cruise control and blind spot detection. Imagine having the latest automotive features available to you AFTER you purchase the car. Consumers will no longer experience automotive obsolescence the second they leave the lot. It also allows auto manufacturers to strengthen ties with their customers.

auto-diagram

There are also substantial changes in store for the internal vehicle data networks. Current systems use a combination of proprietary low-speed or single-purpose communication busses. Next-generation architectures are converting to an IP-based network using Ethernet hardware. This allows massive amounts of data to be easily sent between the various domains inside the vehicle and with external devices. Examples of this type of data include information from the body electronics components, commands on the control systems, multimedia information from the infotainment system and camera/sensor data for the Advanced Driver Assist Systems (ADAS). For instance, video and application data from smart phones and the Internet can be distributed within the car and car information and video data can be sent outside of the vehicle and used in a variety of ways.  Examples might include combining an IP-based vehicle’s camera data, alarm system and LTE to get uploads of pictures surrounding the car when the alarm is triggered. Or, with self-driving cars, who needs the valet? Vehicles can unload passengers and then head to a designated parking area awaiting summons from a smartphone for pick up. (Question: Do I tip my car?)

In Europe, an initial set of technical specifications for Vehicle-to-Vehicle (V2V) communications, based on IEEE802.11P Wireless Access in Vehicular Environments (WAVE), has already been created. The primary goal of this technology is to reduce traffic accidents and improve traffic throughput by allowing cars to communicate with each other in the case of accidents and congestion. V2V could also be used to improve traffic control, collect tolls or aid in police enforcement. Widespread adoption is needed for this to work, as well as addressing privacy concerns.

These are just some of the ways car connectivity will change the driving experience. Marvell is leveraging its strength in wireless and Ethernet technology to develop the latest high-quality AECQ100-qualified automotive products and solutions. To see what’s coming in automotive infotainment, wired/wireless connectivity and next-generation architecture platforms, join us at the 2015 IEEE-SA Ethernet & IP @ Automotive Technology Day that will be held in Yokohama, Japan October 27-28 — because when you see the latest in automotive connectivity semiconductor technology, you will get a glimpse of the Connected Cars of the future.