Marvell Blog

Featuring technology ideas and solutions worth sharing.

Archive for the ‘Switching’ Category

March 17th, 2017

Three Days, Two Speaking Sessions and One New Product Line: Marvell Sets the (IEEE 802.1BR) Standard for Data Center Solutions at the 2017 OCP U.S. Summit

By Michael Zimmerman

At last week’s 2017 OCP U.S. Summit, it was impossible to miss the buzz and activity happening at Marvell’s booth. Taking our mantra #MarvellOnTheMove to heart, the team worked tirelessly throughout the week to present and demo Marvell’s vision for the future of the data center, which came to fruition with the launch of our newest Prestera® PX Passive Intelligent Port Extender (PIPE) family.

But we’re getting ahead of ourselves…

DSC00242

Marvell kicked off OCP with two speaking sessions from its leading technologists. Yaniv Kopelman, Networking CTO of the Networking Group, presented “Extending the Lifecycle of 3.2T Switches,” a discussion on the concept of port extender technology and how to apply it to future data center architecture. Michael Zimmerman, vice president and general manager of the Networking Group, then spoke on “Modular Networking” and teased Marvell’s first modular solution based on port extender technology.

Throughout the show, customers, media and attendees visited Marvell’s booth to see our breakthrough innovations that are leading the disaggregation of the cloud network infrastructure industry. These products included:

Marvell’s Prestera PX PIPE family purpose-built to reduce power consumption, complexity and cost in the data center

Marvell’s 88SS1092 NVMe SSD controller designed to help boost next-generation storage and data center systems

Marvell’s Prestera 98CX84xx switch family designed to help data centers break the 1W per 25G port barrier for 25G Top-of-Rack (ToR) applications

Marvell’s ARMADA® 64-bit ARM®-based modular SoCs developed to improve the flexibility, performance and efficiency of servers and network appliances in the data center

Marvell’s Alaska® C 100G/50G/25G Ethernet transceivers which enable low-power, high-performance and small form factor solutions

We’re especially excited to introduce our PIPE solution on the heels of OCP because of the dramatic impact we anticipate it will have on the data center…

Until now, data centers with 10GbE and 25GbE port speeds have been challenged with achieving lower operating expense (OPEX) and capital expenditure (CAPEX) costs as their bandwidth needs increase. As the industry’s first purpose-built port extender supporting the IEEE 802.1BR standard, Marvell’s PIPE solution is a revolutionary approach that makes it possible to deploy ToR switches at half the power and cost of a traditional Ethernet switch.

Marvell’s PIPE solution enables data centers to be architected with a very simple, low-cost, low-power port extender in place of a traditional ToR switch, pushing the heavy switching functionality upstream. As the industry today transitions from 10GbE to 25GbE and from 40GbE to 100GbE port speeds, data centers are also in need of a modular building block to bridge the variety of current and next-generation port speeds. Marvell’s PIPE family provides a flexible and scalable solution to simplify and accelerate such transitions, offering multiple configuration options of Ethernet connectivity for a range of port speeds and port densities.

PIPE-Data

Amidst all of the announcements, speaking sessions and demos, our very own George Hervey, principal architect, also sat down with Semiconductor Engineering’s Ed Sperling for a Tech Talk. In the white board session, George discussed the power efficiency of networking in the enterprise and how costs can be saved by rightsizing Ethernet equipment.

The 2017 OCP U.S. Summit was filled with activity for Marvell, and we can’t wait to see how our customers benefit from our suite of data center solutions. In the meantime, we’re here to help with all of your data center needs, questions and concerns as we watch the industry evolve.

What were some of your OCP highlights? Did you get a chance to stop by the Marvell booth at the show? Tweet us at @marvellsemi to let us know, and check out all of the activity from last week. We want to hear from you!

March 13th, 2017

Port Extender Technology Changes Network Switch Landscape

By George Hervey

PIPE-Data-Center_V21-sized

Our lives are increasingly dependent on cloud-based computing and storage infrastructure. Whether at home, at work, or on the move with our smartphones and other mobile computing devices, cloud compute and storage resources are omnipresent. It is no surprise therefore that the demands on such infrastructure are growing at an alarming rate, especially as the trends of big data and the internet of things start to make their impact. With an increasing number of applications and users, the annual growth rate is believed to be 30x per annum, and even up to 100x in some cases. Such growth leaves Moore’s law and new chip developments unable to keep up with the needs of the computing and network infrastructure. These factors are making the data and communication network providers invest in multiple parallel computing and storage resources as a way of scaling to meet demands. It is now common for cloud data centers to have hundreds if not thousands of servers that need to be connected together.

Interconnecting all of these compute and storage appliances is becoming a real challenge, as more and more switches are required. Within a data center a classic approach to networking is a hierarchical one, with an individual rack using a leaf switch – also termed a top-of-rack or ToR switch – to connect within the rack, a spine switch for a series of racks, and a core switch for the whole center. And, like the servers and storage appliances themselves, these switches all need to be managed. In the recent past there have usually been one or two vendors of data center network switches and the associated management control software, but things are changing fast. Most of the leading cloud service providers, with their significant buying power and technical skills, recognised that they could save substantial cost by designing and building their own network equipment. Many in the data center industry saw this as the first step in disaggregating the network hardware and the management software controlling it. With no shortage of software engineers, the cloud providers took the management software development in-house while outsourcing the hardware design. While that, in part, satisfied the commercial needs of the data center operators, from a technical and operational management perspective nothing has been simplified, leaving a huge number of switches to be managed.

The first breakthrough to simplify network complexity came in 2009 with the introduction of what we know now as a port extender. The concept rests on the belief that there are many nodes in the network that don’t need the extensive management capabilities most switches have. Essentially this introduces a parent/child relationship, with the controlling switch, the parent, being the managed switch and the child, the port extender, being fed from it. This port extender approach was ratified into the networking standard 802.1BR in 2012, and every network switch built today complies with this standard. With less technical complexity within the port extenders, there were perceived benefits that would come from lower per unit cost compared to a full bridge switch, in addition to power savings.

The controlling bridge and port extender approach has certainly helped to drive simplicity into network switch management, but that’s not the end of the story. Look under the lid of a port extender and you’ll find the same switch chip being used as in the parent bridge. We have moved forward, sort of. Without a chip specifically designed as a port extender switch vendors have continued to use their standard chips sets, without realising potential cost and power savings. However, the truly modular approach to network switching has taken a leap forward with the launch of Marvell’s 802.1BR compliant port extender IC termed PIPE – passive intelligent port extender, enabling interoperability with a controlling bridge switch from any of the industry’s leading OEMs. It also offers attractive cost and power consumption benefits, something that took the shine off the initial interest in port extender technology. Seen as the second stage of network disaggregation, this approach effectively leads to decoupling the port connectivity from the processing power in the parent switch, creating a far more modular approach to networking. The parent switch no longer needs to know what type of equipment it is connecting to, so all the logic and processing can be focused on the parent, and the port I/O taken care of in the port extender.

Marvell’s Prestera® PIPE family targets data centers operating at 10GbE and 25GbE speeds that are challenged to achieve lower CAPEX and OPEX costs as the need for bandwidth increases. The Prestera PIPE family will facilitate the deployment of top-of-rack switches at half the cost and power consumption of a traditional Ethernet switch. The PIPE approach also includes a fast fail over and resiliency function, essential for providing continuity and high availability to critical infrastructure.

January 20th, 2017

The New Scaling Paradigm: Ethernet Port Extenders

By Michael Zimmerman

Over the last three decades, Ethernet has grown to be the unifying communications infrastructure across all industries. More than 3M Ethernet ports are deployed daily across all speeds, from FE to 100GbE. In enterprise and carrier deployments, a combination of pizza boxes — utilizing stackable and high-density chassis-based switches — are used to address the growth in Ethernet. However, over the past several years, the Ethernet landscape has continued to change. With Ethernet deployment and innovation happening fastest in the data center, Ethernet switch architecture built for the data center dominates and forces adoption by the enterprise and carrier markets. This new paradigm shift has made architecture decisions in the data center critical and influential across all Ethernet markets. However, the data center deployment model is different.
 

How Data Centers are Different

Ethernet-ExtendersEthernet port deployment in data centers tends to be uniform, the same Ethernet port speed whether 10GbE, 25GbE or 50GbE is deployed to every server through a top of rack (ToR) switch, and then aggregated in multiple CLOS layers. The ultimate goal is to pack as many Ethernet ports at the highest commercially available speed onto the Ethernet switch, and make it the most economical and power efficient. The end point connected to the ToR switch is the server NIC which is typically the highest available speed in the market (currently 10/25GbE moving to 25/50GbE). Today, 128 ports of 25GbE switches are in deployment, going to 64x 100GbE and beyond in the next few years. But while data centers are moving to higher port density and higher port speeds, and homogenous deployment, there is still a substantial market for lower speeds such as 10GbE that continues to be deployed and must be served economically. The innovation in data centers drives higher density and higher port speeds but many segments of the market still need a solution with lower port speeds with different densities. How can this problem be solved?
 

Bridging the Gap

Fortunately, the technology to bridge lower speed ports to higher density switches has existed for several years. The IEEE standards codified the 802.1br port extender standard as the protocol needed to allow a fan-out of ports from an originating higher speed port. In essence, one high end, high port density switch can fan out hundreds or even thousands of lower speed ports. The high density switch is the control bridge, while the devices which fan out the lower speed ports are the port extenders.
 

Why Use Port Extenders

In addition to re-packaging the data center switch as a control bridge, there are several unique advantages for using port extenders:

  1. Port extenders are only a fraction of the cost, power and board space of any other solution aimed for serving Ethernet ports.
  2. Port extenders have very little or no software. This simplified operational deployment results in the number of managed entities limited to only the high end control bridges.
  3. Port extenders communicate with any high-end switch, via standard protocol 802.1br. Additional options such as Marvell DSA, or programmable headers are possible.)
  4. Port extenders work well with any transition service: 100GbE to 10GbE ports, 400GbE to 25GbE ports, etc.
  5. Port extenders can operate in any downstream speed: 1GbE, 2.5GbE, 10GbE, 25GbE, etc.
  6. Port extenders can be oversubscribed or non-oversubscribed, which means the ratio of upstream bandwidth to downstream bandwidth can be programmable from 1:1 to 1:4 (depending on the application). This by itself can lower cost and power by a factor of 4x.

 
 
Port-Extenders

 

Marvell Port Extenders

Marvell has launched multiple purpose-built port extender products, which allow fan-out of 1GbE and 10GbE ports of 40GbE and 100GbE higher speed ports. Along with the silicon solution, software reference code is available and can be easily integrated to a control bridge. Marvell conducted interoperability tests with a variety of control bridge switches, including the leading switches in the market. The benchmarked design offers 2x cost reduction and 2x power savings. SDK, data sheet and design package are available. Marvell IEEE802.1br port extenders are shipping to the market now. Contact your sales representatives for more information.

 

January 9th, 2017

Ethernet Darwinism: The survival of the fittest (or the fastest)

By Michael Zimmerman

The most notable metric of Ethernet technology is the raw speed of communications. Ethernet has taken off in a meaningful way with 10BASE-T, which was used ubiquitously across many segments. With the introduction of 100BASE-T, the massive 10BASE-T installed base was replaced, showing a clear Darwinism effect of the fittest (fastest) displacing the prior and older generation. However, when 1000BASE-T (GbE – Gigabit Ethernet) was introduced, contrary to industry experts’ predictions, it did not fully displace 100BASE-T, and the two speeds have co-existed for a long time (more than 10 years). In fact, 100BASE-T is still being deployed in many applications. The introduction — and slow ramp — of 10GBASE-T has not impacted the growth of GbE, and it is only recently that GbE ports began consistently growing year over year. This trend signaled a new evolution paradigm of Ethernet: the new doesn’t replace the old, and the co-existence of multi variants is the general rule. The introduction of 40GbE and 25GbE augmented the wide diversity of Ethernet speeds, and although 25GbE was rumored to displace 40GbE, it is expected that 40GbE ports will still be deployed over the next 10 years1.

Ethernet-Diversity

Hence, a new market reality evolved: there is less of a cannibalizing effect (i.e. newer speed cannibalizing the old), and more co-existence of multiple variants. This new diversity will require a set of solutions which allow effective support for multiple speed interconnect. Two critical capabilities will be needed:

  1. Ability to economically scale-down to a few ports2
  2. Support of multiple Ethernet speeds

Marvell launched a new set of Ethernet interconnect solutions that meet this evolution pattern. The first products in the family are the Prestera® 98DX83xx 320G interconnect switch, and the Alaska® 88X5113 25G/40G Gearbox PHY. The 98DX83xx switch fans-out up to 32-ports of 10GbE or 8-ports of 40GbE, in economical 24x20mm package, with power of less than 0.5Watt/10G port.

Interconnect1

The 88X5113 Gearbox converts a single port of 40GbE to 25GbE. The combination of the two devices creates unique connectivity configurations for a myriad of Ethernet speeds, and most importantly enables scale down to a few ports. While data center- scale 25GbE switches have been widely available for 64-ports, 128-ports (and beyond), a new underserved market segment evolved for a lower port count of 25GbE and 40GbE. Marvell has addressed this space with the new interconnect solution, allowing customers to configure any number of ports to different speeds, while keeping the power envelope to sub-20Watt, and a fraction of the  hardware/thermal footprint of comparable data center solutions. The optimal solution to serve low port count connectivity of 10GbE, 25GbE, and 40GbE is now well addressed by Marvell. Samples and development boards with SDK are ready, with the option of a complete package of application software.

Interconnect2

  1. In the mega data center market, there is cannibalization effect of former Ethernet speeds, and mass migration to higher speeds. However, in the broader market which includes private data centers, enterprise, carriers, multiple Ethernet speeds co-exist in many use cases.
  2. Ethernet switches with high port density of 10GbE and 25GbE are generally available. However, these solutions do not scale down well to sub-24 ports, where there is pent-up demand for devices as proposed here by Marvell.