Marvell Blog

Featuring technology ideas and solutions worth sharing

Marvell

Archive for the ‘Wireless’ Category

June 21st, 2017

Making Better Use of Legacy Infrastructure

By Ron Cates

The flexibility offered by wireless networking is revolutionizing the enterprise space. High-speed Wi-Fi®, provided by standards such as IEEE 802.11ac and 802.11ax, makes it possible to deliver next-generation services and applications to users in the office, no matter where they are working.

However, the higher wireless speeds involved are putting pressure on the cabling infrastructure that supports the Wi-Fi access points around an office environment. The 1 Gbit/s Ethernet was more than adequate for older wireless standards and applications. Now, with greater reliance on the new generation of Wi-Fi access points and their higher uplink rate speeds, the older infrastructure is starting to show strain. At the same time, in the server room itself, demand for high-speed storage and faster virtualized servers is placing pressure on the performance levels offered by the core Ethernet cabling that connects these systems together and to the wider enterprise infrastructure.

One option is to upgrade to a 10 Gbit/s Ethernet infrastructure. But this is a migration that can be prohibitively expensive. The Cat 5e cabling that exists in many office and industrial environments is not designed to cope with such elevated speeds. To make use of 10 Gbit/s equipment, that old cabling needs to come out and be replaced by a new copper infrastructure based on Cat 6a standards. Cat 6a cabling can support 10 Gbit/s Ethernet at the full range of 100 meters, and you would be lucky to run 10 Gbit/s at half that distance over a Cat 5e cable.

In contrast to data-center environments that are designed to cope easily with both server and networking infrastructure upgrades, enterprise cabling lying in ducts, in ceilings and below floors is hard to reach and swap out. This is especially true if you want to keep the business running while the switchover takes place.

Help is at hand with the emergence of the IEEE 802.3bz™ and NBASE-T® set of standards and the transceiver technology that goes with them. 802.3bz and NBASE-T make it possible to transmit at speeds of 2.5 Gbit/s or 5 Gbit/s across conventional Cat 5e or Cat 6 at distances up to the full 100 meters. The transceiver technology leverages advances in digital signal processing (DSP) to make these higher speeds possible without demanding a change in the cabling infrastructure.

The NBASE-T technology, a companion to the IEEE 802.3bz standard, incorporates novel features such as downshift, which responds dynamically to interference from other sources in the cable bundle. The result is lower speed. But the downshift technology has the advantage that it does not cut off communication unexpectedly, providing time to diagnose the problem interferer in the bundle and perhaps reroute it to sit alongside less sensitive cables that may carry lower-speed signals. This is where the new generation of high-density transceivers come in.

There are now transceivers coming onto the market that support data rates all the way from legacy 10 Mbit/s Ethernet up to the full 5 Gbit/s of 802.3bz/NBASE-T – and will auto-negotiate the most appropriate data rate with the downstream device. This makes it easy for enterprise users to upgrade the routers and switches that support their core network without demanding upgrades to all the client devices. Further features, such as Virtual Cable Tester® functionality, makes it easier to diagnose faults in the cabling infrastructure without resorting to the use of specialized network instrumentation.

Transceivers and PHYs designed for switches can now support eight 802.3bz/NBASE-T ports in one chip, thanks to the integration made possible by leading-edge processes. These transceivers are designed not only to be more cost-effective, they also consume far less power and PCB real estate than PHYs that were designed for 10 Gbit/s networks. This means they present a much more optimized solution with numerous benefits from a financial, thermal and a logistical perspective.

The result is a networking standard that meshes well with the needs of modern enterprise networks – and lets that network and the equipment evolve at its own pace.

May 31st, 2017

Further Empowerment of the Wireless Office

By Yaron Zimmerman

In order to benefit from the greater convenience offered for employees and more straightforward implementation, office environments are steadily migrating towards wholesale wireless connectivity. Thanks to this, office staff will no longer be limited by where there are cables/ports available, resulting in a much higher degree of mobility. It will mean that they can remain constantly connected and their work activities won’t be hindered – whether they are at their desk, in a meeting or even in the cafeteria. This will make enterprises much better aligned with our modern working culture – where hot desking and bring your own device (BYOD) are becoming increasingly commonplace.

The main dynamic which is going to be responsible for accelerating this trend will be the emergence of 802.11ac Wave 2 Wi-Fi technology. With the prospect of exploiting Gigabit data rates (thereby enabling the streaming of video content, faster download speeds, higher quality video conferencing, etc.), it is clearly going to have considerable appeal. In addition, this protocol offers extended range and greater bandwidth through multi-user MIMO operation – so that a larger number of users can be supported simultaneously. This will be advantageous to the enterprise, as less access points per users will be required.

Pipe

An example of the office floorplan for an enterprise/campus is described in Figure 1 (showing a large number of cubicles and also some meeting rooms too). Though scenarios vary, generally speaking an enterprise/campus is likely to occupy a total floor space of between 20,000 and 45,000 square feet. With one 802.11ac access point able to cover an area of 3000 to 4000 square feet, a wireless office would need a total of about 8 to 12 access points to be fully effective. This density should be more than acceptable for average voice and data needs. Supporting these access points will be a high capacity wireline backbone.

Increasingly, rather than employing traditional 10 Gigabit Ethernet infrastructure, the enterprise/campus backbone is going to be based on 25 Gigabit Ethernet technology. It is expected that this will see widespread uptake in newly constructed office buildings over the next 2-3 years as the related optics continue to become more affordable. Clearly enterprises want to tap into the enhanced performance offered by 802.11ac, but they have to do this while also adhering to stringent budgetary constraints too. As the data capacity at the backbone gets raised upwards, so will the complexity of the hierarchical structure that needs to be placed underneath it, consisting of extensive intermediary switching technology. Well that’s what conventional thinking would tell us.

Before embarking on a 25 Gigabit Ethernet/802.11ac implementation, enterprises have to be fully aware of what all this entails. As well as the initial investment associated with the hardware heavy arrangement just outlined, there is also the ongoing operational costs to consider. By aggregating the access points into a port extender that is then connecting directly to the 25 Gigabit Ethernet backbone instead towards a central control bridge switch, it is possible to significantly simplify the hierarchical structure – effectively eliminating a layer of unneeded complexity from the system.

Through its Passive Intelligent Port Extender (PIPE) technology Marvell is doing just that. This product offering is unique to the market, as other port extenders currently available were not originally designed for that purpose and therefore exhibit compromises in their performance, price and power. PIPE is, in contrast, an optimized solution that is able to fully leverage the IEEE 802.1BR bridge port extension standard – dispensing with the need for expensive intermediary switches between the control bridge and the access point level and reducing the roll-out costs as a result. It delivers markedly higher throughput, as the aggregating of multiple 802.11ac access points to 10 Gigabit Ethernet switches has been avoided. With fewer network elements to manage, there is some reduction in terms of the ongoing running costs too.

PIPE means that enterprises can future proof their office data communication infrastructure – starting with 10 Gigabit Ethernet, then upgrading to a 25 Gigabit Ethernet when it is needed. The number of ports that it incorporates are a good match for the number of access points that an enterprise/campus will need to address the wireless connectivity demands of their work force. It enables dual homing functionality, so that elevated service reliability and resiliency are both assured through system redundancy. In addition, supporting Power-over-Ethernet (PoE), allows access points to connect to both a power supply and the data network through a single cable – further facilitating the deployment process.

April 27th, 2017

The Challenges Of 11ac Wave 2 and 11ax in Wi-Fi Deployments How to Cost-Effectively Upgrade to 2.5GBASE-T and 5GBASE-T

By Nick Ilyadis

The Insatiable Need for Bandwidth: Standards Trying to Keep Up

With the push for more and more Wi-Fi bandwidth, the WLAN industry, its standards committees and the Ethernet switch manufacturers are having a hard time keeping up with the need for more speed. As the industry prepares for upgrading to 802.11ac Wave 2 and the promise of 11ax, the ability of Ethernet over existing copper wiring to meet the increased transfer speeds is being challenged. And what really can’t keep up are the budgets that would be needed to physically rewire the millions of miles of cabling in the world today.

The Latest on the Latest Wireless Networking Standards: IEEE 802.11ac Wave 2 and 802.11ax

The latest 802.11ac IEEE standard is now in Wave 2. According to Webopedia’s definition: the 802.11ac -2013 update, or 802.11ac Wave 2, is an addendum to the original 802.11ac wireless specification that utilizes Multi-User, Multiple-Input, Multiple-Output (MU-MIMO) technology and other advancements to help increase theoretical maximum wireless speeds from 3.47 gigabits-per-second (Gbps), in the original spec, to 6.93 Gbps in 802.11ac Wave 2. The original 802.11ac spec itself served as a performance boost over the 802.11n specification that preceded it, increasing wireless speeds by up to 3x. As with the initial specification, 802.11ac Wave 2 also provides backward compatibility with previous 802.11 specs, including 802.11n.

IEEE has also noted that in the past two decades, the IEEE 802.11 wireless local area networks (WLANs) have also experienced tremendous growth with the proliferation of IEEE 802.11 devices, as a major Internet access for mobile computing. Therefore, the IEEE 802.11ax specification is under development as well.  Giving equal time to Wikipedia, its definition of 802.11ax is: a type of WLAN designed to improve overall spectral efficiency in dense deployment scenarios, with a predicted top speed of around 10 Gbps. It works in 2.4GHz or 5GHz and in addition to MIMO and MU-MIMO, it introduces Orthogonal Frequency-Division Multiple Access (OFDMA) technique to improve spectral efficiency and also higher order 1024 Quadrature Amplitude Modulation (QAM) modulation support for better throughputs. Though the nominal data rate is just 37 percent higher compared to 802.11ac, the new amendment will allow a 4X increase of user throughput. This new specification is due to be publicly released in 2019.

Faster “Cats” Cat 5, 5e, 6, 6e and on

And yes, even cabling is moving up to keep up. You’ve got Cat 5, 5e, 6, 6e and 7 (search: Differences between CAT5, CAT5e, CAT6 and CAT6e Cables for specifics), but suffice it to say, each iteration is capable of moving more data faster, starting with the ubiquitous Cat 5 at 100Mbps at 100MHz over 100 meters of cabling to Cat 6e reaching 10,000 Mbps at 500MHz over 100 meters. Cat 7 can operate at 600MHz over 100 meters, with more “Cats” on the way. All of this of course, is to keep up with streaming, communications, mega data or anything else being thrown at the network.

How to Keep Up Cost-Effectively with 2.5BASE-T and 5BASE-T

What this all boils down to is this: no matter how fast the network standards or cables get, the migration to new technologies will always be balanced with the cost of attaining those speeds and technologies in the physical realm. In other words, balancing the physical labor costs associated to upgrade all those millions of miles of cabling in buildings throughout the world, as well as the switches or other access points. The labor costs alone, are a reason why companies often seek out to stay in the wiring closet as long as possible, where the physical layer (PHY) devices, such access and switches, remain easier and more cost effective to switch out, than replacing existing cabling.

This is where Marvell steps in with a whole solution. Marvell’s products, including the Avastar wireless products, Alaska PHYs and Prestera switches, provide an optimized solution that will help support up to 2.5 and 5.0 Gbps speeds, using existing cabling. For example, the Marvell Avastar 88W8997 wireless processor was the industry’s first 28nm, 11ac (wave-2), 2×2 MU-MIMO combo with full support for Bluetooth 4.2, and future BT5.0. To address switching, Marvell created the Marvell® Prestera® DX family of packet processors, which enables secure, high-density and intelligent 10GbE/2.5GbE/1GbE switching solutions at the access/edge and aggregation layers of Campus, Industrial, Small Medium Business (SMB) and Service Provider networks. And finally, the Marvell Alaska family of Ethernet transceivers are PHY devices which feature the industry’s lowest power, highest performance and smallest form factor.

These transceivers help optimize form factors, as well as multiple port and cable options, with efficient power consumption and simple plug-and-play functionality to offer the most advanced and complete PHY products to the broadband market to support 2.5G and 5G data rate over Cat5e and Cat6 cables.

You mean, I don’t have to leave the wiring closet?

The longer changes can be made at the wiring closet vs. the electricians and cabling needed to rewire, the better companies can balance faster throughput at lower cost. The Marvell Avastar, Prestera and Alaska product families are ways to help address the upgrade to 2.5G- and 5GBASE-T over existing copper wire to keep up with that insatiable demand for throughput, without taking you out of the wiring closet. See you inside!

# # #

February 3rd, 2017

Super Bowl LI Scores a Touchdown on Tech

By Sander Arts

With Super Bowl Sunday just around the corner, we’re reminded of last year’s game that took place just a few blocks away from Marvell’s campus in the heart of Silicon Valley. Taking inspiration from the locale, Super Bowl 50 was undoubtedly the most tech-savvy event to date. The Denver Broncos and Carolina Panthers played at Levi’s Stadium in Santa Clara, one of the most technologically advanced venues in the country and the first stadium to feature 40 gigabits per second of internet capacity. TechRepublic reported that there were 10.15 terabytes of data transferred across the network during the game, with cloud storage, social networking and web surfing accounting for the top three applications transferring data on Levi’s Wi-Fi network.  What was even more impressive was Levi Stadium’s mobile app which enabled attendees to order food and beverages in advance, find the shortest bathroom and concession lines and access game highlights in high-definition.

But where does the game go from here? With sports fans being more engaged and connected than ever, how can technology continue enhancing the fan experience for Super Bowl 51?

NRG Stadium, Houston, TX Source: Wikipedia

NRG Stadium, Houston, TX
Source: Wikipedia

This year, the mobile app worth cheering for is Fox Sports Go. For fans unable to watch the New England Patriots and Atlanta Falcons face off live in Houston on Sunday, they can still get up close to the game in virtual reality. Fox Sports will stream the game live on its app which can be viewed in VR using a Samsung Gear headset or Google Cardboard. The app’s “virtual suite” will offer viewers various viewpoints of the game – even those without a VR headset can experience the game in 360-degree video.

However, we can’t forget that for many viewers, the Super Bowl commercials are just as entertaining as the game itself. With the price of a 30-second ad reaching nearly $5 million this year, brands are, more than ever, using this opportunity to release some of the funniest, strangest and powerful ads to meet viewers’ high expectations. This Sunday, we’re especially looking forward to the technology commercials, such as the Kia Niro and Ford “Go Further” ads, which will highlight advancements in connected car technology. As consumers become increasingly interested in automotive technology, we can expect to see more Super Bowl commercials highlighting data and connectivity both this year and in the years to come.

Last year’s record-breaking data usage is just an example of how important Wi-Fi and connectivity have become in our fast-paced world, especially at events such as the Super Bowl where instant streaming and sharing play an essential role in the viewers’ experience. At last year’s game, 15.9 terabytes of data were transferred via Distributed Antenna System, which was 2.5 times the amount compared to the Super Bowl the year before. Will the record to be broken again this Sunday?

As we tune in to the biggest TV event of the year, we look forward to seeing how technology will up the ante at Super Bowl 51, from the amount of data being transferred to fans sharing their experience on social media, it’s sure to be a touchdown performance!

You can follow Sander Arts on Twitter @Sander1Arts

January 18th, 2017

The Four Most Exciting Wireless Audio Trends

By Jawad Haider

As chips are becoming smaller and more powerful, the wireless audio market is continuing to rapidly grow. According to MarketsandMarkets, the wireless audio industry is expected to reach $54.07 billion by 2022, at a CAGR of 23.2 percent between 2016 and 2022. High performance, low power wireless and Bluetooth/ Bluetooth Low Energy (BLE) solutions have been key enablers of the growth of wireless audio, providing the technology for companies to develop connected audio solutions that have the throughput and range needed for high-resolution wireless, integrated with the extended battery life consumers expect for portable devices.

Multi-channel and multi-room wireless audio solutions are two key trends that have seen an increase in consumer adoption. However, to enable consumers to seamlessly stream their favorite tunes throughout their homes, there are a few key technological challenges with range and synchronization that must be addressed.

Marvell’s newest Avastar® wireless connectivity solutions make range limitations a thing of the past for many home and enterprise audio applications. Marvell’s high performance and low power Avastar combos incorporate Dynamic Multi-Hop Relay (DMHR) Technology to connect up to 15 devices in a daisy-chain fashion, extending the range of traditional Wi-Fi networks 15 times from 40m to almost 600m in a typical home. Additionally, Marvell has enabled other exciting features, such as connecting up to 31 clients to a speaker or sound bar which acts as a soft access point.

Diagram showing a daisy-chain wireless audio setup

Diagram showing a daisy-chain wireless audio setup

To make every microsecond of audio count, Marvell’s Avastar solutions provide cutting-edge audio synchronization across devices and rooms. Combining Marvell’s advanced Wi-Fi technology, support for the 802.11mc standard, and hardware time-stamping synchronization algorithms developed by our partners, Avastar delivers best-in-class smart connected solutions.

Another key trend in the wireless audio space, is the emergence of voice assisted products like Amazon Echo and Google Home. Marvell is working closely with all voice-enabled ecosystems to be at the forefront of technology enablement for this new category of products.

From portable speakers to advanced soundbar systems, Marvell’s advanced wireless technology is embedded in many of the most popular audio products on the market today. To learn more about Marvell’s wireless solutions, please visit: www.marvell.com/wireless. You can also read more about wireless trends and standards in my Q&A with Electronic Design’s Bill Wong http://electronicdesign.com/wifi/qa-what-s-new-wireless-audio-market.

January 13th, 2017

Marvell and Mythware Introduce “Classroom Cloud” in Primary and Secondary Schools

By Yong Luo

Recently, Marvell and local China customer Nanjing Mythware Information Technology Co., Ltd. (Mythware), cooperated to create a brand new wireless network interactive teaching tool –the Mythware Classroom Cloud. Compact and exquisitely designed, this wireless network teaching solution is the first brand new educational hardware product based on Mythware’s more than 10 years of experience in education informatization and multimedia audio and video technologies.

mythware

The introduction of the Mythware Classroom Cloud, as well as its supplementary interactive classroom software, effectively solves some common wireless network equipment-related teaching application challenges, such as instability, frequent dropping offline and data transmission errors. Thus, the innovative Interactive teaching can be successfully carried out wirelessly. This not only enhances the efficiency of teaching, but also brings new vigor and vitality into primary and secondary classrooms.

mythware2

The Mythware Classroom Cloud incorporates a complete set of Marvell high-performance Wi-Fi enterprise-class wireless solutions, offering 2.4G and 5G operating frequency bands, and wireless throughput of up to 1900Mbit/s. The solution includes a dual-core 1.6GHz CPU – the ARMADA® 385. It also uses Marvell’s Avastar® 88W8864 – an 802.11ac 4X4 Wi-Fi chip. And, last but not least, the unit boasts a four-port Gigabit Ethernet transceiver, Marvell’s Alaska® 88E1543. Marvell’s solutions have been widely used in the Cisco enterprise cloud and Linksys high-end routers.

The Marvell ARMADA 385 CPU chip, with super data processing and computing capability, is built into the Mythware Classroom Cloud. It provides strong protection for sending and receiving large-capacity cloud files in the classroom. The CPU also provides abundant interfaces, so you can connect hard drives directly through the SATA 3.0 interface, which helps the Mythware Classroom Cloud to support up to 8TB of storage.

This is especially important for schools with poor network conditions. Teachers can upload resources such as courseware to the Classroom Cloud’s hard drives before school time, and call on the resources directly in class. That enables students to enjoy multimedia teaching resources immediately and without interruption, effectively solving problems caused by inaccessible networks or limited network bandwidth. The Mythware Classroom Cloud enables full real-time interconnection between teacher’s and student’s end devices, sending and receiving documents, arranging homework and accessing teaching resources in real time, without needing them to be forwarded by campus servers.

mythware3

One of the biggest highlights of the Mythware Classroom Cloud is that its lightweight body contains “wireless” super energy. Marvell’s Avastar 88W8864 802.11ac 4X4 wireless chip significantly improves the bandwidth utilization, as well as further upgrading data transmission capacity and reliability. It also provides trusted network support for a variety of multimedia file transmission in the wireless network teaching environment, ensuring the stability of classroom interactions.

One of its outstanding features is that teachers can use the wireless network in the classroom to send high-definition video (8Mbit/s) to more than 60+ mobile terminal devices with different operating systems, completely in sync and without delay. At the same time, teachers no longer have to worry about screen-pausing problems when broadcasting a PPT screen or demonstrating 3D graphic models.

And, when teachers use some interactive features (such as group teaching, sharing the whiteboard, initiating discussion and quick answer, survey and evaluations) during the teaching process, the problems of intermittent playback and the network dropping offline are solved.

mythware4

In addition, the Alaska 88E15433 Ethernet transceiver chip mounted in the Marvell solution provides stable and reliable Gigabit Ethernet connections, and Marvell’s 88PG877 power management chip provides voltage stability for the Mythware Classroom Cloud. It also supports flexible power supply modes: local AC and 802.3af PoE powering. With its special rotary chuck design, the Mythware Classroom Cloud equipment can be easily installed on classroom walls or ceilings.

mythware5

Mythware was founded in 2007, and for the past 10 years its main business has been educational software. Its core product – classroom interactive system software – enjoys a market share of up to 95% in China. It also supports up to 24 different languages, and is exported to over 60 countries and regions. Domestic and global users now exceed 31 million. By 2017, Mythware plans to fully transform into an integrated hardware and software supplier, focusing on intelligent hardware, big data, cloud platform, and will continue to release a large number of new hardware products and solutions. New opportunities for cooperation between Marvell and Mythware will continue to emerge.

 

February 12th, 2015

Marvell Recognized for Wi-Fi® Leadership

By Paul Lambert

paul-lambert-wifi-awardMarvell was awarded the prestigious Outstanding Leadership and Contribution Award from Wi-Fi Alliance® for the sixth consecutive year.

The Wi-Fi Alliance is a worldwide network of companies that brings you Wi-Fi® and whose shared vision is to connect everyone and everything, everywhere. The members of this collaboration forum come from across the Wi-Fi ecosystem. The Wi-Fi CERTIFIED™ seal of approval designates products with proven interoperability, industry-standard security protections and the latest technology. Wi-Fi Alliance has certified more than 23,000 products, delivering the best user experience and encouraging the expanded use of Wi-Fi products and services in new and established markets, which is why billions of devices today work interactively throughout the world today.

“This annual award was given to Marvell because of its strong contributions to the Wi-Fi industry through leadership in Wi-Fi Alliance initiatives,” said Edgar Figueroa, President and Chief Executive Officer, of the Wi-Fi Alliance. “This year marks Marvell’s sixth sequential recognition, underscoring the company’s ongoing commitment and participation in Wi-Fi Alliance technology certification and development activities.”

Marvell’s innovative Wi-Fi technology is a key foundation of its end-to-end “Smart Life and Smart Lifestyle” solutions including Internet of Things (IoT), Kinoma Create, Kinoma Connect software, 4G LTE mobile solutions, mobile storage, and other industry-leading products.

With Marvell’s portfolio of advanced wireless technology and integrated security, we help make sure your calls and digital entertainment activities don’t get dropped or intercepted.

Essentially, Marvell continues its involvement, award or no award, with the Wi-Fi alliance because we believe in the mission, and it provides the underlying technology that allows people to do great things — fun things — with their mobile devices. Whether it’s social media or socializing — like sending selfies — we want to do our part to ensure that today’s mobile to digital entertainment devices to tomorrow’s Internet of Things (IoT) work and work well together. That’s why Marvell keeps pushing forward, not only with its technology, but also addresses obstacles at an industry level, so users can seamlessly enjoy their technology devices.

To view Marvell’s wireless offerings go to: http://www.marvell.com/wireless/.