Marvell Blog

Featuring technology ideas and solutions worth sharing

Marvell

Latest Articles

January 23rd, 2018

New Brew: Latest MACCHIATObin Community Boards are Able to Address Much Wider Scope of Developer Requirements

By Maen Suleiman, Senior Software Product Line Manager at Marvell

Following the success of the MACCHIATObin® development platform, which was released back in the spring, Marvell and technology partner SolidRun have now announced the next stage in the progression of this hardware offering. After drawing on the customer feedback received, a series of enhancements to the original concept have subsequently been made, so that these mini-ITX boards are much more optimized for meeting the requirements of engineers.

Marvell and SolidRun announce the availability of two new MACCHIATObin products that will supersede the previous release. They are the MACCHIATObin Single Shot and the MACCHIATObin Double Shot boards.

As before, these mini-ITX format networking community boards both feature the powerful processing capabilities of Marvell’s ARMADA® 8040 system-on-chip (SoC) and stay true to the original objective of bringing an affordable Arm-based development resource with elevated performance to the market. However, now engineers have a choice in terms of how much supporting functionality comes with it – thus making the platform even more attractive and helping to reach a much wider audience.

Figure 1: MACCHIATObin Single Shot (left) and MACCHIATObin Double Shot (right)

The more streamlined MACCHIATObin Single Shot option presents an entry level board that should appeal to engineers with budgetary constraints. This has a much lower price tag than the original board, coming in at just $199. It comes with two 10G SFP+ connectors without the option of two 10G copper connectors, and also doesn’t come with default DDR4 DIMM as its predecessor, but still has a robust 1.6GHz processing speed.

This is complemented by the higher performance MACCHIATObin Double Shot. This unleashes the full 2GHz of processing capacity that can be derived from the ARMADA 8040, which relies on a 64-bit quad-core Arm Cortex-A72 processor core. 4GB of DDR4 DIMM is included. At only $399 it represents great value for money – costing only slightly more than the original, but with extra features and stronger operational capabilities being delivered. It comes with additional accessories that are not in the Single Shot package – including a power cable and a microUSB-to-USB cable.

Both the Single Shot and Double Shot versions incorporate heatsink and fan mechanisms in order to ensure that better reliability is maintained through more effective thermal management. The fan has an airflow of 6.7 cubic feet per minute (CFM) with low noise operation. A number of layout changes have been implemented upon the original design to better utilize the available space and to make the board more convenient for those using it. For example, the SD card slot has been moved to make it more accessible and likewise the SATA connectors are now better positioned, allowing easier connection of multiple cables. The micro USB socket has also been relocated to aid engineers.

A 3-pin UART header has been added to the console UART (working in parallel with FTDI USB-to-UART interface IC). This means that developers now have an additional connectivity option that they can utilize, making the MACCHIATObin community board more suitable for deployment in remote locations or where it needs to interface with legacy equipment (that do not have a USB port). The DIP switches have been replaced with jumpers, which again gives the boards greater versatility. The JTAG connector is not assembled by default, the PCI Express (PCIe) x4 slot has been replaced with an open PCIx4 slot so that it can accommodate a wider variety of different board options (like x8 and x16, as well as x4 PCIe) such as graphics processor cards, etc. to be connected. Furthermore, the fixed LED emitter has been replaced by one that is general purpose input/output (GPIO) controlled, thereby enabling operational activity to be indicated.

The fact that these units have the same form factor as the original, means that they offer a like-for-like replacement for the previous model of the MACCHIATObin board. Therefore existing designs that are already using this board can be upgraded to the higher performance MACCHIATObin Double Shot version or conversely scaled down to the MACCHIATObin Single Shot in order to reduce the associated costs.

Together the MACCHIATObin Double Shot and Single Shot boards show that the team at Marvell are always listening to our customer base and responding to their needs. Learning from the first MACCHIATObin release, we have been able to make significant refinements, and consequently develop two new very distinct product offerings. One that addresses engineers that are working to a tight budget, for which the previous board would not have been viable, and the other for engineers that want to boost performance levels.

 

 

 

 

January 11th, 2018

Ethernet Set to Bring About Radical Shift in How Automotive Networks are Implemented

By Christopher Mash, Senior Director of Automotive Applications & Architecture, Marvell

The in-vehicle networks currently used in automobiles are based on a combination of several different data networking protocols, some of which have been in place for decades. There is the controller area network (CAN), which takes care of the powertrain and related functions; the local interconnect network (LIN), which is predominantly used for passenger/driver comfort purposes that are not time sensitive (such as climate control, ambient lighting, seat adjustment, etc.); the media oriented system transport (MOST), developed for infotainment; and FlexRay™ for anti-lock braking (ABS), electronic power steering (EPS) and vehicle stability functions.

As a result of using different protocols, gateways are needed to transfer data within the infrastructure. The resulting complexity is costly for car manufacturers. It also affects vehicle fuel economy, since the wire harnessing needed for each respective network adds extra weight to the vehicle. The wire harness represents the third heaviest element of the vehicle (after the engine and chassis) and the third most expensive, too. Furthermore, these gateways have latency issues, something that will impact safety-critical applications where rapid response is required.

The number of electronic control units (ECUs) incorporated into cars is continuously increasing, with luxury models now often having 150 or more ECUs, and even standard models are now approaching 80-90 ECUs. At the same time, data intensive applications are emerging to support advanced driver assistance system (ADAS) implementation, as we move toward greater levels of vehicle autonomy. All this is causing a significant ramp in data rates and overall bandwidth, with the increasing deployment of HD cameras and LiDAR technology on the horizon.

As a consequence, the entire approach in which in-vehicle networking is deployed needs to fundamentally change, first in terms of the topology used and, second, with regard to the underlying technology on which it relies.

Currently, the networking infrastructure found inside a car is a domain-based architecture. There are different domains for each key function – one for body control, one for infotainment, one for telematics, one for powertrain, and so on. Often these domains employ a mix of different network protocols (e.g., with CAN, LIN and others being involved).

As network complexity increases, it is now becoming clear to automotive engineers that this domain-based approach is becoming less and less efficient. Consequently, in the coming years, there will need to be a migration away from the current domain-based architecture to a zonal one.

A zonal arrangement means data from different traditional domains is connected to the same ECU, based on the location (zone) of that ECU in the vehicle. This arrangement will greatly reduce the wire harnessing required, thereby lowering weight and cost – which in turn will translate into better fuel efficiency. Ethernet technology will be pivotal in moving to zonal-based, in-vehicle networks.

In addition to the high data rates that Ethernet technology can support, Ethernet adheres to the universally-recognized OSI communication model. Ethernet is a stable, long-established and well-understood technology that has already seen widespread deployment in the data communication and industrial automation sectors. Unlike other in-vehicle networking protocols, Ethernet has a well-defined development roadmap that is targeting additional speed grades, whereas protocols – like CAN, LIN and others – are already reaching a stage where applications are starting to exceed their capabilities, with no clear upgrade path to alleviate the problem.

Future expectations are that Ethernet will form the foundation upon which all data transfer around the car will occur, providing a common protocol stack that reduces the need for gateways between different protocols (along with the hardware costs and the accompanying software overhead). The result will be a single homogeneous network throughout the vehicle in which all the protocols and data formats are consistent. It will mean that the in-vehicle network will be scalable, allowing functions that require higher speeds (10G for example) and ultra-low latency to be attended to, while also addressing the needs of lower speed functions. Ethernet PHYs will be selected according to the particular application and bandwidth demands – whether it is a 1Gbps device for transporting imaging sensing data, or one for 10Mbps operation, as required for the new class of low data rate sensors that will be used in autonomous driving.

Each Ethernet switch in a zonal architecture will be able to carry data for all the different domain activities. All the different data domains would be connected to local switches and the Ethernet backbone would then aggregate the data, resulting in a more effective use of the available resources and allowing different speeds to be supported, as required, while using the same core protocols. This homogenous network will provide ‘any data, anywhere’ in the car, supporting new applications through combining data from different domains available through the network.

Marvell is leading the way when it comes to the progression of Ethernet-based, in-vehicle networking and zonal architectures by launching, back in the summer of 2017, the AEC-Q100-compliant 88Q5050 secure Gigabit Ethernet switch for use in automobiles. This device not only deals with OSI Layers 1-2 (the physical layer and data layer) functions associated with standard Ethernet implementations, it also has functions located at OSI Layers 3,4 and beyond (the network layer, transport layer and higher), such as deep packet inspection (DPI). This, in combination with Trusted Boot functionality, provides automotive network architects with key features vital in ensuring network security.

January 11th, 2018

Storing the World’s Data

By Marvell, PR Team

Storage is the foundation for a data-centric world, but how tomorrow’s data will be stored is the subject of much debate. What is clear is that data growth will continue to rise significantly. According to a report compiled by IDC titled ‘Data Age 2025’, the amount of data created will grow at an almost exponential rate. This amount is predicted to surpass 163 Zettabytes by the middle of the next decade (which is almost 8 times what it is today, and nearly 100 times what it was back in 2010). Increasing use of cloud-based services, the widespread roll-out of Internet of Things (IoT) nodes, virtual/augmented reality applications, autonomous vehicles, machine learning and the whole ‘Big Data’ phenomena will all play a part in the new data-driven era that lies ahead.

Further down the line, the building of smart cities will lead to an additional ramp up in data levels, with highly sophisticated infrastructure being deployed in order to alleviate traffic congestion, make utilities more efficient, and improve the environment, to name a few. A very large proportion of the data of the future will need to be accessed in real-time. This will have implications on the technology utilized and also where the stored data is situated within the network. Additionally, there are serious security considerations that need to be factored in, too.

So that data centers and commercial enterprises can keep overhead under control and make operations as efficient as possible, they will look to follow a tiered storage approach, using the most appropriate storage media so as to lower the related costs. Decisions on the media utilized will be based on how frequently the stored data needs to be accessed and the acceptable degree of latency. This will require the use of numerous different technologies to make it fully economically viable – with cost and performance being important factors.

There are now a wide variety of different storage media options out there. In some cases these are long established while in others they are still in the process of emerging. Hard disk drives (HDDs) in certain applications are being replaced by solid state drives (SSDs), and with the migration from SATA to NVMe in the SSD space, NVMe is enabling the full performance capabilities of SSD technology. HDD capacities are continuing to increase substantially and their overall cost effectiveness also adds to their appeal. The immense data storage requirements that are being warranted by the cloud mean that HDD is witnessing considerable traction in this space.

There are other forms of memory on the horizon that will help to address the challenges that increasing storage demands will set. These range from higher capacity 3D stacked flash to completely new technologies, such as phase-change with its rapid write times and extensive operational lifespan. The advent of NVMe over fabrics (NVMf) based interfaces offers the prospect of high bandwidth, ultra-low latency SSD data storage that is at the same time extremely scalable.

Marvell was quick to recognize the ever growing importance of data storage and has continued to make this sector a major focus moving forwards, and has established itself as the industry’s leading supplier of both HDD controllers and merchant SSD controllers.

Within a period of only 18 months after its release, Marvell managed to ship over 50 million of its 88SS1074 SATA SSD controllers with NANDEdge™ error-correction technology. Thanks to its award-winning 88NV11xx series of small form factor DRAM-less SSD controllers (based on a 28nm CMOS semiconductor process), the company is able to offer the market high performance NVMe memory controller solutions that are optimized for incorporation into compact, streamlined handheld computing equipment, such as tablet PCs and ultra-books. These controllers are capable of supporting reads speeds of 1600MB/s, while only drawing minimal power from the available battery reserves. Marvell offers solutions like its 88SS1092 NVMe SSD controller designed for new compute models that enable the data center to share storage data to further maximize cost and performance efficiencies.

The unprecedented growth in data means that more storage will be required. Emerging applications and innovative technologies will drive new ways of increasing storage capacity, improving latency and ensuring security. Marvell is in a position to offer the industry a wide range of technologies to support data storage requirements, addressing both SSD or HDD implementation and covering all accompanying interface types from SAS and SATA through to PCIe and NMVe.

Check out www.marvell.com to learn more about how Marvell is storing the world’s data.

January 10th, 2018

Moving the World’s Data

By Marvell, PR Team

The way in which data is moved via wireline and wireless connectivity is going through major transformations. The dynamics that are causing these changes are being seen across a broad cross section of different sectors.

Within our cars, the new features and functionality that are being incorporated mean that the traditional CAN and LIN based communication technology is no longer adequate. More advanced in-vehicle networking needs to be implemented which is capable of supporting multi-Gigabit data rates, in order to cope with the large quantities of data that high resolution cameras, more sophisticated infotainment, automotive radar and LiDAR will produce. With CAN, LIN and other automotive networking technologies not offering viable upgrade paths, it is clear that Ethernet will be the basis of future in-vehicle network infrastructure – offering the headroom needed as automobile design progresses towards the long term goal of fully autonomous vehicles. Marvell is already proving itself to be ahead of the game here, following the announcement of the industry’s first secure automotive gigabit Ethernet switch, which delivers the speeds now being required by today’s data-heavy automotive designs, while also ensuring secure operation is maintained and the threat of hacking or denial of service (DoS) attacks is mitigated.

Within the context of modern factories and processing facilities, the arrival of Industry 4.0 will allow greater levels of automation, through use of machine-to-machine (M2M) communication. This communication can enable the access of data — data that is provided by a multitude of different sensor nodes distributed throughout the site. The ongoing in-depth analysis of this data is designed to ultimately bring improvements in efficiency and productivity for the modern factory environment. Ethernet capable of supporting Gigabit data rates has shown itself to be the prime candidate and it is already experiencing extensive implementation. Not only will this meet the speed and bandwidth requirements needed, but it also has the robustness that is mandatory in such settings (dealing with high temperatures, ESD strikes, exposure to vibrations, etc.) and the low latency characteristics that are essential for real-time control/analysis. Marvell has developed highly sophisticated Gigabit Ethernet transceivers with elevated performance that are targeted at such applications.

Within data centers things are changing too, but in this case the criteria involved are somewhat different. Here it is more about how to deal with the large volumes of data involved, while keeping the associated capital and operational expenses in check. Marvell has been championing a more cost effective and streamlined approach through its Prestera® PX Passive Intelligent Port Extender (PIPE) products. These present data center engineers with a modular approach to deploy network infrastructure that meets their specific requirements, rather than having to add further layers of complexity unnecessarily that will only serve to raise the cost and the power consumption. The result is a fully scalable, more economical and energy efficient solution.

In the wireless domain, there is ever greater pressure being placed upon WLAN hardware – in the home, office, municipal and retail environments. As well as increasing user densities and overall data capacity to contend with, network operators and service providers need to be able to address alterations that are now occurring in user behavior too. Wi-Fi connectivity is no longer just about downloading data, increasingly it will be the uploading of data that will be an important consideration. This will be needed for a range of different applications including augmented reality gaming, the sharing of HD video content and cloud-based creative activities. In order to address this, Wi-Fi technology will need to exhibit enhanced bandwidth capabilities on its uplink as well as its downlink.

The introduction of the much anticipated 802.11ax protocol is set to radically change how Wi-Fi is implemented. Not only will this allow far greater user densities to be supported (thereby meeting the coverage demands of places where large numbers of people are in need of Internet access, such as airports, sports stadia and concert venues), it also offers greater uplink/downlink data capacity – supporting multi-Gigabit operation in both directions. Marvell is looking to drive things forward via its portfolio of recently unveiled multi-Gigabit 802.11ax Wi-Fi system-on-chips (SoCs), which are the first in the industry to have orthogonal frequency-division multiple access (OFDMA) and multi-user MIMO operation on both the downlink and the uplink.

Check out www.marvell.com to learn more about how Marvell is moving the world’s data.

January 10th, 2018

Marvell Demonstrates Edge Computing by Extending Google Cloud to the Network Edge with Pixeom Edge Platform at CES 2018

By Maen Suleiman, Senior Software Product Line Manager at Marvell

The adoption of multi-gigabit networks and planned roll-out of next generation 5G networks will continue to create greater available network bandwidth as more and more computing and storage services get funneled to the cloud. Increasingly, applications running on IoT and mobile devices connected to the network are becoming more intelligent and compute-intensive. However, with so many resources being channeled to the cloud, there is strain on today’s networks.

Instead of following a conventional cloud centralized model, next generation architecture will require a much greater proportion of its intelligence to be distributed throughout the network infrastructure. High performance computing hardware (accompanied by the relevant software), will need to be located at the edge of the network. A distributed model of operation should provide the needed compute and security functionality required for edge devices, enable compelling real-time services and overcome inherent latency issues for applications like automotive, virtual reality and industrial computing. With these applications, analytics of high resolution video and audio content is also needed.

Through use of its high performance ARMADA® embedded processors, Marvell is able to demonstrate a highly effective solution that will facilitate edge computing implementation on the Marvell MACCHIATObin™ community board using the ARMADA 8040 system on chip (SoC). At CES® 2018, Marvell and Pixeom teams will be demonstrating a fully effective, but not costly, edge computing system using the Marvell MACCHIATObin community board in conjunction with the Pixeom Edge Platform to extend functionality of Google Cloud Platform™ services at the edge of the network. The Marvell MACCHIATObin community board will run Pixeom Edge Platform software that is able to extend the cloud capabilities by orchestrating and running Docker container-based micro-services on the Marvell MACCHIATObin community board.

Currently, the transmission of data-heavy, high resolution video content to the cloud for analysis purposes places a lot of strain on network infrastructure, proving to be both resource-intensive and also expensive. Using Marvell’s MACCHIATObin hardware as a basis, Pixeom will demonstrate its container-based edge computing solution which provides video analytics capabilities at the network edge. This unique combination of hardware and software provides a highly optimized and straightforward way to enable more processing and storage resources to be situated at the edge of the network. The technology can significantly increase operational efficiency levels and reduce latency.

The Marvell and Pixeom demonstration deploys Google TensorFlow™ micro-services at the network edge to enable a variety of different key functions, including object detection, facial recognition, text reading (for name badges, license plates, etc.) and intelligent notifications (for security/safety alerts). This technology encompasses the full scope of potential applications, covering everything from video surveillance and autonomous vehicles, right through to smart retail and artificial intelligence. Pixeom offers a complete edge computing solution, enabling cloud service providers to package, deploy, and orchestrate containerized applications at scale, running on premise “Edge IoT Cores.” To accelerate development, Cores come with built-in machine learning, FaaS, data processing, messaging, API management, analytics, offloading capabilities to Google Cloud, and more.

The MACCHIATObin community board is using Marvell’s ARMADA 8040 processor and has a 64-bit ARMv8 quad-core processor core (running at up to 2.0GHZ), and supports up to 16GB of DDR4 memory and a wide array of different I/Os. Through use of Linux® on the Marvell MACCHIATObin board, the multifaceted Pixeom Edge IoT platform can facilitate implementation of edge computing servers (or cloudlets) at the periphery of the cloud network. Marvell will be able to show the power of this popular hardware platform to run advanced machine learning, data processing, and IoT functions as part of Pixeom’s demo. The role-based access features of the Pixeom Edge IoT platform also mean that developers situated in different locations can collaborate with one another in order to create compelling edge computing implementations. Pixeom supplies all the edge computing support needed to allow Marvell embedded processors users to establish their own edge-based applications, thus offloading operations from the center of the network.

Marvell will also be demonstrating the compatibility of its technology with the Google Cloud platform, which enables the management and analysis of deployed edge computing resources at scale. Here, once again the MACCHIATObin board provides the hardware foundation needed by engineers, supplying them with all the processing, memory and connectivity required.

Those visiting Marvell’s suite at CES (Venetian, Level 3 – Murano 3304, 9th-12th January 2018, Las Vegas) will be able to see a series of different demonstrations of the MACCHIATObin community board running cloud workloads at the network edge. Make sure you come by!

January 9th, 2018

Processing the World’s Data

By Marvell, PR Team

The data requirements of modern society are escalating at a relentless pace with new paradigms changing the way data is processed. The rapidly rising volume of data that is now being uploaded and downloaded from the cloud (such as HD video or equally data-intensive immersive gaming content) is putting incredible strain onto existing network infrastructure – testing both the bandwidth and data density speeds that are supported.

The onset of augmented reality (AR) and virtual reality (VR) will require access to considerable processing power, but at the same time mandate extremely low latency levels, to prevent lag effects. The widespread roll-out of IoT infrastructure, connected cars, robotics and industrial automation systems, to name a few, will also have uncompromising processing and latency demands that are simply not in line with current network architectures.

Transporting data from the network edge back to centralized servers (and vice versa) takes time, and hence adds an unacceptable level of latency to certain applications. All this will mean that fundamental changes need to be made. Rather than having all the processing resources located at the center of the network, a more distributed model is going to be needed in the future. Though the role of centralized servers will unquestionably still be important, this will be complemented by remote servers that are located at the edge of the network – thus making them closer to the users themselves, and thereby mitigating latency issues which is critical for time-sensitive data.

The figures on this speak for themselves. It is estimated that by 2020, approximately 45% of fog computing-generated data will be stored, processed, analyzed and subsequently acted upon either close to or at the edge of the network. Running in tandem with this, data centers will look to start utilizing in-storage processing. Here, in order to alleviate CPU congestion levels and mitigate network latency, data processing resources are going to start being placed closer to the storage drive. This, as a result, will dispense with the need to continuously transfer large quantities of data to and from storage reserves so that it can be processed, with processing tasks instead taking place inside the storage controller.

The transition from traditional data centers to edge-based computing, along with the onset of in-storage processing, will call for a new breed of processor devices. In addition to delivering the operational performance that high throughput, low latency applications will require, these devices will also need to meet the power, cost and space constraints that are going to characterize edge deployment.

Through the highly advanced portfolio of ARMADA® Arm-based multi-core embedded processors, Marvell has been able to supply the industry with processing solutions that can help engineers in facing the challenges that have just been outlined. These ICs combine high levels of integration, elevated performance and low power operation. Using ARMADA as a basis, the company has worked with technology partners to co-develop the MACCHIATObin™ and ESPRESSObin® community boards. The Marvell community boards, which each use 64-bit ARMADA processors, bring together a high-performance single-board computing platform and open source software for developers and designers working with a host of networking, storage and connectivity applications. They give users both the raw processing capabilities and the extensive array of connectivity options needed to develop proprietary edge computing applications from the ground up.

Incorporating a total of 6 MACCHIATObin boards plus a Marvell high density Prestera DX 14 port, 10 Gigabit Ethernet switch IC, the NFV PicoPod from PicoCluster is another prime example of ARMADA technology in action. This ultra-compact unit provides engineers with a highly cost effective and energy efficient platform upon which they can implement their own virtualized network applications. Fully compliant with the OPNFV Pharos specification, it opens up the benefits of NFV technology to a much broader cross section of potential customers, allowing everyone from the engineering teams in large enterprises all the way down to engineers who are working solo to rapidly develop, verify and deploy virtual network functions (VNFs) – effectively providing them with their own ‘datacenter on desktop’.

The combination of Marvell IoT enterprise edge gateway technology with the Google Cloud IoT Core platform is another way via which greater intelligence is being placed at the network periphery. The upshot of this will be that the estimated tens of billions of connected IoT nodes that will be installed over the course of the coming years can be managed in the most operationally efficient manner, offloading much of the workload from the core network’s processing capabilities and only utilizing them when it is completely necessary.

Check out www.marvell.com to learn more about how Marvell is processing the world’s data.

 

December 13th, 2017

The Marvell NVMe DRAM-less SSD Controller Proves Victorious at the 2017 ACE Awards

By Sander Arts, Interim VP of Marketing

Key representatives of the global technology sector were gathered together at the San Jose Convention Center last week to hear the recipients of this year’s Annual Creativity in Electronics (ACE) Awards announced. This prestigious awards event, which is organized in conjunction with leading electronics engineering magazines EDN and EE Times, highlights the most innovative products announced in the last 12 months, as well as recognizing visionary executives and the most promising new start-ups. A panel made up of the editorial teams of these magazines, plus several highly respected independent judges, were all involved in the process of selecting the winner in each category.

The 88NV1160 high performance controller for non-volatile memory express (NVMe), which was introduced by Marvell earlier this year, fought off tough competition from companies like Diodes Inc. and Cypress Semiconductor to win the coveted Logic/Interface/Memory category. Marvell gained two further nominations at the awards – with 98PX1012 Prestera PX Passive Intelligent Port Extender (PIPE) also being featured in the Logic/Interface/Memory category, while the 88W8987xA automotive wireless combo SoC was among those cited in the Automotive category.

Designed for inclusion in the next generation of streamlined portable computing devices (such as high-end tablets and ultra-books), the 88NV1160 NVMe solid-state drive (SSD) controllers are able to deliver 1600MB/s read speeds while simultaneously keeping the power consumption required for such operations extremely low (<1.2W). Based on a 28nm low power CMOS process, each of these controller ICs has a dual core 400MHz Arm® Cortex®-R5 processor embedded into it.

Through incorporation of a host memory buffer, the 88NV1160 exhibits far lower latency than competing devices. It is this that is responsible for accelerating the read speeds supported. By utilizing its embedded SRAM, the controller does not need to rely on an external DRAM memory – thereby simplifying the memory controller implementation. As a result, there is a significant reduction in the board space required, as well as a lowering of the overall bill-of-materials costs involved.

The 88NV1160’s proprietary NANDEdge™ low density parity check error-correction functionality raises SSD endurance and makes sure that long term system reliability is upheld throughout the end product’s entire operational lifespan. The controller’s built-in 256-bit AES encryption engine ensures that stored metadata is safeguarded from potential security breaches. Furthermore, these DRAM-less ICs are very compact, thus enabling multiple-chip package integration to be benefitted from.

Consumers are now expecting their portable electronics equipment to possess a lot more computing resource, so that they can access the exciting array of new software apps that are now becoming available; making use of cloud-based services, enjoying augmented reality and gaming. At the same time as offering functions of this kind, such items of equipment need to be able to support longer periods between battery recharges, so as to further enhance the user experience derived. This calls for advanced ICs combining strong processing capabilities with improved power efficiency levels and that is where the 88NV1160 comes in.

“We’re excited to honor this robust group for their dedication to their craft and efforts in bettering the industry for years to come,” said Nina Brown, Vice President of Events at UBM Americas. “The judging panel was given the difficult task of selecting winners from an incredibly talented group of finalists and we’d like to thank all of those participants for their amazing work and also honor their achievements. These awards aim to shine a light on the best in today’s electronics realm and this group is the perfect example of excellence within both an important and complex industry.”