Archive for the ‘5G’ Category

Posted on

Marvell showcases its new no-compromise Open RAN solution with ecosystem partners using best of cloud, wireless compute architectures

By Peter Carson, Senior Director Solutions Marketing, Marvell

Marvell’s 5G Open RAN architecture leverages its OCTEON Fusion processor and underscores collaborations with Arm and Meta to drive adoption of no-compromise 5G Open RAN solutions

The wireless industry’s no-compromise 5G Open RAN platform will be on display at Mobile World Congress 2022. The Marvell-designed solution builds on its extensive compute collaboration with Arm and raises expectations about Open RAN capabilities for ecosystem initiatives like the Meta Connectivity Evenstar program, which is aimed at expanding the global adoption of Open RAN. Last year at MWC, Marvell announced it had joined the Evenstar program [read more]. This year, Marvell’s new 5G Open RAN Accelerator will be on display at the Arm booth at MWC 2022. The OCTEON Fusion processor, which integrates 5G in-line acceleration and Arm Neoverse CPUs, is the foundation for Marvell’s Open RAN DU reference design.

5G is going mainstream with the rapid rollout of next generation networks by every major operator worldwide. The ability of 5G to reliably provide high bandwidth and extremely low latency connectivity is powering applications like metaverse, autonomous driving, industrial IoT, private networks, and many more. 5G is a massive undertaking that is set to transform entire industries and serve the world’s diverse connectivity needs for years to come. But the wireless networks at the center of this revolution are, themselves, undergoing a major transformation – not just in feeds and speeds, but in architecture. More specifically, significant portions of the 5G radio access network (RAN) are moving into the cloud.

(more…)

Posted on

No-Compromise 5G Open RAN: Compute Architecture

By Peter Carson, Senior Director Solutions Marketing, Marvell

Introduction 

5G networks are evolving to a cloud-native architecture with Open RAN at the center. This explainer series is aimed at de-mystifying the challenges and complexity in scaling these emerging open and virtualized radio access networks. Let’s start with the compute architecture.

The Problem 

Open RAN systems based on legacy compute architectures utilize an excessively high number of CPU cores and energy to support 5G Layer 1 (L1) and other data-centric processing, like security, networking and storage virtualization. As illustrated in the diagram below, this leaves very few host compute resources available for the tasks the server was originally designed to support. These systems typically offload a small subset of 5G L1 functions, such as forward error correction (FEC), from the host to an external FPGA-based accelerator but execute the processing offline. This kind of look-aside (offline) processing of time-critical L1 functions outside the data path adds latency that degrades system performance.

Image:  Limitations of Open RAN systems based on general purpose processors

(more…)

Posted on

Optical Technologies for 5G Access Networks

By Matt Bolig, Director, Product Marketing, Networking Interconnect, Marvell

There’s been a lot written about 5G wireless networks in recent years.  It’s easy to see why; 5G technology supports game-changing applications like autonomous driving and smart city infrastructure.  Infrastructure investment in bringing this new reality to fruition will take many years and 100’s of billions of dollars globally, as figure 1 below illustrates.

Figure 1: Cumulative Global 5G RAN Capex in $B (source: Dell’Oro, July 2021)

When considering where capital is invested in 5G, one underappreciated aspect is just how much wired infrastructure is required to move massive amounts of data through these wireless networks. 

(more…)

Posted on

Unleashing 5G Network Performance with Next Generation Ethernet

By Alik Fishman, Director of Product Management, Marvell

Blink your eyes. That’s how fast data will travel from your future 5G-enabled device, over the network to a server and back. Like Formula 1 racing cars needing special tracks for optimal performance, 5G requires agile networking transport infrastructure to unleash its full potential. The 5G radio access network (RAN) requires not only base stations with higher throughputs and soaring speeds but also an advanced transport network, capable of securely delivering fast response times to mobile end points, whatever those might be: phones, cars or IoT devices. Radio site densification and Massive Machine-type Communication (mMTC) technology are rapidly scaling the mobile network to support billions of end devices1, amplifying the key role of network transport to enable instant and reliable connectivity.

With Ethernet being adopted as the most efficient transport technology, carrier routers and switches are tasked to support a variety of use cases over shared infrastructure, driving the growth in Ethernet gear installations. In traditional cellular networks, baseband and radio resources were co-located and dedicated at each cell site. This created significant challenges to support growth and shifts in traffic patterns with available capacity. With the emergence of more flexible centralized architectures such as C-RAN, baseband processing resources are pooled in base station hubs called central units (CUs) and distributed units (DUs) and dynamically shared with remote radio units (RUs). This creates even larger concentrations of traffic to be moved to and from these hubs over the network transport.

(more…)

Posted on

Marvell Enables O-RAN to Help 5G Fulfill its True Potential

By Marvell, PR Team

At the most recent FierceWireless 5G Blitz Week, some of the world’s leading 5G innovators met via webinar to discuss the potential of O-RAN and challenges of the ongoing 5G rollout. In a keynote, EVP and General Manager of Marvell’s Processors Business Group Raj Singh explored the accelerating shift to O-RAN, which is an emerging open-source architecture for Radio Access Networks that enables customers to create better 5G applications by mixing and matching RAN technology from different vendors.

O-RAN architectures are compelling because they increase competition among vendors, reduce costs, and offer customers greater flexibility to combine RAN elements according to their application’s specific use cases. However, in addition to their obvious benefits, O-RAN solutions also raise operator concerns including potential challenges with integration, legacy support, interoperability and security – issues that Marvell and other companies in the Open RAN Policy Coalition are addressing through shared standards, proven solutions and innovative approaches.

(more…)