Archive for the ‘Automotive’ Category

Posted on

Ethernet Camera Bridge for Software-Defined Vehicles

By Amir Bar-Niv, VP of Marketing, Automotive Business Unit, Marvell

Automotive Transformation

Smart Car and Data Center-on-wheels are just some of the terms being used to define the exciting new waves of technology transforming the automotive industry and promising safer, greener self-driving cars and enhanced user experiences. Underpinning it all is a megatrend towards Software-defined Vehicles (SDV). SDV is not just a new automotive technology platform. It also enables a new business model for automotive OEMs. With a software-centric architecture, car makers will have an innovation platform to generate unprecedented streams of revenue from aftermarket services and new applications. For owners, the capability to receive over-the-air software updates for vehicles already on the road – as easily as smartphones are updated – means an automobile whose utility will no longer decline over time and driving experiences that can be continuously improved over time.

This blog is the first in a series of blogs that will discuss the basic components of a system that will enable the future of SDV.

Road to SDV is Paved with Ethernet

A key technology to enable SDVs is a computing platform that is supported by an Ethernet-based In-Vehicle network (IVN). An Ethernet-based IVN provides the ability to reshape the traffic between every system in the car to help meet the requirements of new downloaded applications. To gain the full potential of Ethernet-based IVNs, the nodes within the car will need to “talk” Ethernet. This includes devices such as car sensors and cameras. In this blog, we discuss the characteristics and main components that will drive the creation of this advanced Ethernet-based IVN, which will enable this new era of SDV. 

But first let’s talk about the promises of this new business model. For example, people might ask, “how many new applications can possibly be created for cars and who will use them?” This is probably the same question that was asked when Apple created the original AppStore, which started with dozens of new apps, and now of course, the rest is history. We can definitely learn from this model. Plus, this is not going to be just an OEM play. Once SDV cars are on the road, we should expect the emergence of new companies that will develop for the OEMs a whole new world of car applications that will be aligned with other megatrends like Smart City, Mobility as a Service (MaaS), Ride-hailing and many others. 

(more…)

Posted on

Back to the Future – Automotive network run at speed of 10Gbps

By Amir Bar-Niv, VP of Marketing, Automotive Business Unit, Marvell

In the classic 1980s “Back to the Future” movie trilogy, Doc Brown – inventor of the DeLorean time machine – declares that “your future is whatever you make it, so make it a good one.” At Marvell, engineers are doing just that by accelerating automotive Ethernet capabilities: Earlier this week, Marvell announced the latest addition to its automotive products portfolio – the 88Q4346 802.3ch-based multi-gig automotive Ethernet PHY.

This technology addresses three emerging automotive trends requiring multi-gig Ethernet speeds, including:

  1. The increasing integration of high-resolution cameras and sensors
  2. Growing utilization of powerful 5G networks
  3. The rise of Zonal Architecture in car design

Posted on

Full Steam Ahead! Marvell Ethernet Device Bridge Receives Avnu Certification

By Amir Bar-Niv, VP of Marketing, Automotive Business Unit, Marvell

and John Bergen, Sr. Product Marketing Manager, Automotive Business Unit, Marvell

In the early decades of American railroad construction, competing companies laid their tracks at different widths. Such inconsistent standards drove inefficiencies, preventing the easy exchange of rolling stock from one railroad to the next, and impeding the infrastructure from coalescing into a unified national network. Only in the 1860s, when a national standard emerged – 4 feet, 8-1/2 inches – did railroads begin delivering their true, networked potential.

Some one hundred-and-sixty years later, as Marvell and its competitors race to reinvent the world’s transportation networks, universal design standards are more important than ever. Recently, Marvell’s 88Q5050 Ethernet Device Bridge became the first of its type in the automotive industry to receive Avnu certification, meeting exacting new technical standards that facilitate the exchange of information between diverse in-car networks, which enable today’s data-dependent vehicles to operate smoothly, safely and reliably.

(more…)

Posted on

Ethernet Advanced Features for Automotive Applications

By Amir Bar-Niv, VP of Marketing, Automotive Business Unit, Marvell

Ethernet standards comprise a long list of features and solutions that have been developed over the years to resolve real network needs as well as resolve security threats. Now, developers of Ethernet In-Vehicle-Networks (IVN) can easily balance between functionality and cost by choosing the specific features they would like to have in their car’s network.

The roots of Ethernet technology began in 1973, when Bob Metcalfe, a researcher at Xerox Research Center (who later founded 3COM), wrote a memo entitled “Alto Ethernet,” which described how to connect computers over short-distance copper cable. With the explosion of PC-based Local Area Networks (LAN) in businesses and corporations in the 1980s, the growth of client/server LAN architectures continued, and Ethernet started to become the connectivity technology of choice for these networks. However, the Ethernet advancement that made it the most successful networking technology ever was when standardization efforts began for it under the IEEE 802.3 group.

(more…)

Posted on

Why is 802.11ax a “must have” for the connected car?

By Avinash Ghirnikar, Director of Technical Marketing of Connectivity Business Group, Marvell

Imagine motoring along through busy, urban traffic in your new connected car that is learning, getting smarter, safer and more reliable as it is driving. Such a car is constantly gathering and generating all kinds of data that is intermittently and opportunistically being uploaded to the cloud. As more cars on the road feature advanced wireless connectivity, this exciting future will become commonplace. However, each car will need to share the network with potentially hundreds of other cars that might be in its vicinity.

While such a use case could potentially rely on LTE/5G cellular technology, the costs associated with employing such a “licensed pipe” would be prohibitively expensive. In such situations, the new Wi-Fi® standard 802.11ax, also known as high efficiency wireless (HEW), will be a life saver for the automotive industry. The zettabytes of data that cars equipped with a slew of sensors will create in the years to come will all need to be uploaded to the cloud and data centers, enabling next-generation machine learning in order to make driving increasingly safe and predictable in the future. Uploading this data will, of course, need to be done both securely and reliably.

802.11ax connected cars

The car – as an 802.11ax station (STA) – will also be to able upload data to an 802.11ax access point (AP) in the most challenging of wireless environments while sharing the network with other clients. The 802.11ax system will be able to do this via technologies like MU-MIMO and OFDMA (allowing for spatial, frequency and time reuse) which are new innovations that are part of this emerging standard. Today, STAs compete rather than effectively share the network and have to deal with the dreaded “circle of death”’ awaiting connectivity. This is because today’s wireless standard can often be in an all-or-nothing binary mode of operation due to constant competition. When coupled with other upcoming standards like 802.11ai, specifically fast initial link setup (FILS), this vision of cars uploading data to the cloud over Wi-Fi becomes a true reality, even in environments where the car is moving and likely hopping from one AP to another.

While this “under the hood” upload use case is greatly enhanced by the 802.11ax standard from an infrastructure perspective, download of software and firmware into connected cars can also be transformed by this same standard. It is well known that the number of processors and electronic control units (ECUs) in car models is expected to increase dramatically. This, in turn, implies that the software/firmware content in these cars will likewise grow at exponential rates. Periodic firmware over-the-air (FOTA) updates will be required and, therefore, having a reliable and robust mechanism to support this will be vital for automobile manufacturers – potentially saving them millions of dollars in relation to servicing costs, etc.  Such is the pace of innovation and technological change these days that this can sometimes happen almost immediately after cars come off the assembly line.

Take the example of a parking lot outside an auto plant containing hundreds of brand new cars requiring some of their software to be updated.  Here, too, 802.11ax can come to the rescue by making a mass update more efficient and reliable. This advantage will then carry forward for the rest of the lifespan of each car, since it can never be predicted what sort of wireless connectivity environment these cars will encounter. These could be challenging environments like garages, driveways, and maybe even parking decks. The modulation enhancements that 802.11ax delivers, coupled with MU-MIMO and OFDMA features, will ensure that the most efficient and reliable Wi-Fi pipe is always available for such a critical function. Given that a car can easily be on the road for close to a decade, having this functionality built in from day one would be a tremendous advantage and could enable significant cost savings. Again, accompanying technologies like Wake on Bluetooth® Low Energy and Bluetooth Low Energy Long Range will also play a pivotal role in ensuring this use case is realized from an overall end-to-end system standpoint.

These two infrastructure type use cases are likely to be tremendous value-adds for the connected car and can justify the presence of 802.11ax, especially from an automobile manufacturers’ point of view. Even consumers are likely to see significant benefits in their vehicle dashboards where the mobile APs in their infotainment systems will be able to seamlessly connect to their latest smartphone handsets (which will themselves be 802.11ax capable within the 2019 timeframe). Use cases like Wireless Apple CarPlay®, Wireless Android Auto™ Projection, rear seat entertainment, wireless cameras, etc. will all be a breeze given the additional 30-40% throughput enhancement in 802.11ax (and the backward compatibility this standard has with previous Wi-Fi standards for such use cases to cooperatively coexist).  Just as in homes, the number of Wi-Fi endpoints in cars is also proliferating. The 802.11ax standard is the only well-designed path for an increasing number of endpoints and yet provides the best user experience.

The 802.11ax as Release 1 (aka Wave 1) is well on its way to a concrete launch by the Wi-Fi Alliance in the second half of 2019. Products are already being sampled by silicon vendors – both on the AP and STA/mobile AP side – and interoperability testing is well underway. For all wireless system designers at OEMs and their Tier 1 suppliers, the 802.11ax Wi-Fi standard should be a goal, and especially for any product launch set for 2020 and beyond.  The time has come to begin future proofing for the impending arrival of 802.11ax infrastructure. The days of the wireless technology in your smartphone/home/enterprise and in your car belonging to different generations are long gone. Consumers demand that their cars now be an extension of their home/work environments and that all of these living spaces function as one. The 802.11ax is destined to be one of the key pillars of technology to make such a vision a reality.

Marvell has been a pioneer in designing Wi-Fi/Bluetooth combo devices for the automotive market since the debut of such devices in cars in 2011. With actual development beginning almost a decade ago, Marvell’s automotive wireless portfolio has been honed to address key use cases over five generations of products, through working closely with OEMs, Tier 1s and Tier 2s. All the technologies needed to achieve the various use cases described above have been incorporated into Marvell’s fifth generation device. Coupled with Marvell’s offering for enterprise class, high-performance APs, Marvell remains committed to providing the automobile industry and car buyers with the best wireless connectivity experience — encompassing use cases inside and outside of the car today, and well into the future.