-->

We’re Building the Future of Data Infrastructure

Products
Company
Support

Archive for the ‘Ethernet Switching’ Category

January 14th, 2021

What’s Next in System Integration and Packaging? New Approaches to Networking and Cloud Data Center Chip Design

By Wolfgang Sauter, Customer Solutions Architect - Packaging, Marvell

The continued evolution of 5G wireless infrastructure and high-performance networking is driving the semiconductor industry to unprecedented technological innovations, signaling the end of traditional scaling on Single-Chip Module (SCM) packaging. With the move to 5nm process technology and beyond, 50T Switches, 112G SerDes and other silicon design thresholds, it seems that we may have finally met the end of the road for Moore’s Law.1 The remarkable and stringent requirements coming down the pipe for next-generation wireless, compute and networking products have all created the need for more innovative approaches. So what comes next to keep up with these challenges? Novel partitioning concepts and integration at the package level are becoming game-changing strategies to address the many challenges facing these application spaces.

During the past two years, leaders in the industry have started to embrace these new approaches to modular design, partitioning and package integration. In this paper, we will look at what is driving the main application spaces and how packaging plays into next-generation system  architectures, especially as it relates to networking and cloud data center chip design.

What’s Driving Main Application Spaces?

First, let’s take a look at different application spaces and how package integration is critical to enable the next-generation product solutions. In the wireless application space, the market can be further subdivided into handheld and infrastructure devices. Handheld devices in this space are driven by ultimate density, memory and RF integration to support power and performance requirements, while achieving reasonable consumer price points. Wireless infrastructure products in support of 5G will drive antenna array with RF integration, and on the baseband side, require a modular approach to enable scalable products that meet power, thermal and cost requirements in a small area. In the datacenter, next-generation products will need next-node performance and power efficiency to keep up with demand. Key drivers here are the insatiable need for memory bandwidth and the switch to scalable compute systems with high chip-to-chip bandwidth. Wired networking products already need more silicon area than can fit in a reticle, along with more bandwidth between chips and off-module. This pushes design toward larger package sizes with lower loss, as well as a huge amount of power coupled with high-bandwidth memory (HBM) integration.

The overarching trend then is to integrate more function (and therefore more silicon) into any given product. This task is especially difficult when many of the different functions don’t necessarily want to reside on the same chip. This includes: IO function, analog and RF content, and DRAM technologies. SoCs simply can’t fit all the content needed into one chip. In addition, IP schedules versus technology readiness aren’t always aligned. For instance, processors for compute applications may be better suited to move to the next node, whereas interface IP, such as SerDes, may not be ready for that next node until perhaps a year later.

How does the package play into this?

All of these requirements mean we as semiconductor solution providers must now get more than Moore out of the package meaning: we need to get more data and more functionality out of the package, while driving more cost out.

As suitable packaging solutions become increasingly complex and expensive, the need to focus on optimized architectures becomes imperative. The result is a balancing act between the cost, area and complexity of the chip versus the package. Spending more on the package may be a wise call if it helps to significantly reduce chip cost (e.g. splitting a large chip in two halves). But the opposite may be true when the package complexity starts overwhelming the product cost, which can now frequently be seen on complex 2.5D products with HBM integration. Therefore, the industry is starting to embrace new packaging and architectural concepts such as modular packages, chiplet design with chip-to-chip interfaces, or KGD integrated packages. An example of this was the announcement of the AMD Epyc 2 Rome chiplet design which marries its 7nm Zen 2 Cores with 14nm I/O die. As articulated in the introductory review by Anton Shilov of AnandTech at the time of its announcement, “Separating CPU chiplets from the I/O die has its advantages because it enables AMD to make the CPU chiplets smaller as physical interfaces (such as DRAM and Infinity Fabric) do not scale that well with shrinks of process technology. Therefore, instead of making CPU chiplets bigger and more expensive to manufacture, AMD decided to incorporate DRAM and some other I/O into a separate chip.”

These new approaches are revolutionizing chip design as we know it. As the industry moves toward modularity, interface IP and package technology must be co-optimized. Interface requirements must be optimized for low power and high efficiency, while enabling a path to communicate with chips from other suppliers. These new packaging and systems designs must also be compatible with industry specs. The package requirements must enable lower loss in the package while also enabling higher data bandwidth (i.e. a larger package, or alternative data transfer through cables, CPO, etc.).

What’s Next for Data Center Packaging and Design?

This is the first in a two-part series about the challenges and exciting breakthroughs happening in systems integration and packaging as the industry moves beyond the traditional Moore’s Law model. In the next segment we will discuss how packaging and deep package expertise are beginning to share center stage with architecture design to create a new sweet spot for integration and next-generation modular design. We will also focus on how these new chip offerings will unleash opportunities specifically in the data center including acceleration, smartNICs, process, security and storage offload. As we embark on this new era of chip design, we will see how next-generation ASICs will help meet the expanding demands of wired networking and Cloud Data Center chip design to power the data center all the way to the network edge.

# # #

1 Moore’s Law, an observation or projection articulated in 1971 stated that the number of transistors in integrated circuit chips would double every two years.

December 1st, 2020

Superior Performance in the Borderless Enterprise – White Paper

By Gidi Navon, Principal System Architect, Marvell

Superior Performance in the Borderless Enterprise – White Paper

The current environment and an expected “new normal” are driving the transition to a borderless enterprise that must support increasing performance requirements and evolving business models. The infrastructure is seeing growth in the number of endpoints (including IoT) and escalating demand for data such as high-definition content. Ultimately, wired and wireless networks are being stretched as data-intensive applications and cloud migrations continue to rise.

A refresh cycle of the enterprise network is necessarily transpiring. Innovative devices with high-speed SerDes and new Ethernet port types fabricated in advanced process nodes are achieving higher performance and scale on similar power envelopes. This refresh includes next-generation stackable switches for the access layer connected to Wi-Fi access points; alongside these are evolving aggregation switches with high-speed fiber transceivers and core switches based on new chassis architectures. 

For an in-depth analysis of the performance requirements of the borderless enterprise, with solutions based on the newly announced Prestera® devices to help address these needs, download the white paper.

October 20th, 2020

Network Visibility in the Borderless Enterprise – White Paper

By Gidi Navon, Principal System Architect, Marvell

Enterprise networks are changing, adapting and expanding to become a borderless enterprise. Visibility tools must evolve to meet the new requirements of an enterprise that now extends beyond the traditional campus — across multi-cloud environments to the edge.

Much like a brain needs eyes and sensors to function, smart networks in the borderless enterprise need visibility to “see” into the network. Network visibility is now more important than ever to help drive smart networking infrastructure that is intent-based, automated and self-healing. As the borderless enterprise grows, the amount and type of network users as well as the complexity of networks are continuously evolving. Visibility tools are pivotal to supporting these transitions.

To be predictive and to safely navigate through this digital transformation, networks need to be built from switches that look beyond the obvious and provide intelligent telemetry information. Such information can be analyzed and provide proactive infrastructure automation, forensic analytics and mitigations.

To learn about the state-of-the-art visibility tools and how they are evolving to address the new smart borderless enterprise networks, download the white paper:

July 28th, 2020

Living on the Network Edge: Security

By Alik Fishman, Senior Product Marketing Manager, Marvell

Living on the Network Edge: Security

In our series Living on the Network Edge, we have looked at the trends driving Intelligence, Performance and Telemetry to the network edge. In this installment, let’s look at the changing role of network security and the ways integrating security capabilities in network access can assist in effectively streamlining policy enforcement, protection, and remediation across the infrastructure.

Cybersecurity threats are now a daily struggle for businesses experiencing a huge increase in hacked and breached data from sources increasingly common in the workplace like mobile and IoT devices. Not only are the number of security breaches going up, they are also increasing in severity and duration, with the average lifecycle from breach to containment lasting nearly a year1 and presenting expensive operational challenges. With the digital transformation and emerging technology landscape (remote access, cloud-native models, proliferation of IoT devices, etc.) dramatically impacting networking architectures and operations, new security risks are introduced. To address this, enterprise infrastructure is on the verge of a remarkable change, elevating network intelligence, performance, visibility and security2.

COVID-19 has been a wake-up call for accelerating digital transformation – as companies with greater digital presences show more resiliency3. The workforce is expected to transform post-COVID-19 with 20-45%4 becoming distributed and working remotely, either from home or from smaller distributed office spaces. The change in the working environment and accelerated migration to hybrid-cloud and multi-cloud drives a new normal, and the borderless enterprise is now a reality – driving network infrastructure to add end-to-end management, automation and security functionalities needed to support businesses in this new digital era. As mobility and cloud applications extend traditional boundaries and this borderless enterprise becomes increasingly vulnerable, a broader attack surface is no longer contained within well-defined and defended perimeters. Cracks are showing. Remote workers’ identities and devices are the new security perimeter with 70% of all breaches originating at endpoints, according to IDC research5.

This is where embedded security in network access provides essential frontline protection from malicious attacks entry points by enforcing zero-trust access policies. No traffic is trusted from the outset, and the traffic isn’t in the clear within networking devices throughout the infrastructure. Network telemetry and integrated security safeguards capable of inspecting workloads at line-rate team up with security appliances and AI-analytic tools to intelligently flag suspicious traffic and rapidly detect threats. Segmentation of security zones and agile group policy enforcement limits areas of exposure, prevents lateral movement, and enables quick remediation. IEEE 802.1AE MACSec encryption on all ports secure data throughout the network and prevent intrusion. Monitoring control protocol exceptions and activating rate limiters add layers of protection to control and management planes, preventing DDOS attacks. Integrated secure boot and secured storage provide the protection from counterfeit attempts to compromise network hardware and software.

Cybersecurity is now the dominate priorities of every organization, as each adapts to a post-COVID 19 world. Network-embedded security is on the rise to become a powerful ally in fighting the battle against ever evolving security threats. In this dynamic world, what can your network do to secure your assets?

Living on the Network Edge

What steps are you taking to bolster your network for living on the edge? Telemetry, Intelligence, Performance and Security are critical technologies for the growing borderless campus as mobility and cloud applications proliferate and drive networking functions. Learn more at: https://www.marvell.com/solutions/enterprise.html.

###

1 https://www.varonis.com/blog/cybersecurity-statistics
2 Cisco 2019 Global Networking Trends Survey
3 Morgan Stanley, 2Q20 CIO Survey: IT Hardware Takeaways
4 Dell’Oro Group Ethernet Switch – Campus five-year forecast, 2020-2024
5 Forbes 2020 Roundup Of Cybersecurity Forecasts And Market Estimates

July 23rd, 2020

Telemetry: Can You See the Edge?

By Suresh Ravindran, Senior Director, Software Engineering

Telemetry: Can You See the Edge?

So far in our series Living on the Network Edge, we have looked at trends driving Intelligence and Performance to the network edge. In this blog, let’s look into the need for visibility into the network.

As automation trends evolve, the number of connected devices is seeing explosive growth. IDC estimates that there will be 41.6 billion connected IoT devices generating a whopping 79.4 zettabytes of data in 20251. A significant portion of this traffic will be video flows and sensor traffic which will need to be intelligently processed for applications such as personalized user services, inventory management, intrusion prevention and load balancing across a hybrid cloud model. Networking devices will need to be equipped with the ability to intelligently manage processing resources to efficiently handle huge amounts of data flows.

How do you see what you can’t see?

But is your network edgy enough? In order to handle the growth, we’ve seen intelligence pushed to the network edge for application-aware engineering and inferencing applications running in hybrid clouds. In order to keep up with billions of mobile devices using denser applications, we addressed wireless offloading as one method to alleviate the burden on cellular networks. This approach increases the load on edge and enterprise networks with demands for intelligent flow processing capabilities to efficiently utilize the LAN and WAN bandwidth.   With intelligence and performance in place, we also need to address the growing complexity associated with “seeing” how network switching resources are being utilized. Visibility through network telemetry is fundamental to empowering AI-automation, performance, security and troubleshooting. To be proactive and predictive, networks need to be built with switches that look beyond the obvious with intelligent telemetry capabilities.

Intelligent telemetry for effective network visibility

Increased use of analytics and AI for performance monitoring, detection, troubleshooting and response has been ranked a top priority for organizations to achieve their vision of the ideal networkIT professionals leverage telemetry to define workload behaviors requiring network bandwidth timing patterns and whether applications are causing jitter or low-bandwidth issues. In general, telemetry functions have tracked events in hindsight but are now increasingly used to analyze and predict – living on the network edge means monitoring, predicting and managing the anomalies for proactive infrastructure automation and application responses.

An effective telemetry solution also requires network devices to stream a wide range of metadata for network flow and switch resource usage in real time. As streaming telemetry header formats evolve, it is equally important for the switch silicon’s pipeline to have programming abilities which adapt to changes in telemetry tools while performing at line-rate.   

Successfully living at the network edge means detecting and adjusting algorithms in real time. It won’t be enough to move intelligence to the edge and increase the performance for workloads if you can’t see what is happening within the network. Network visibility is crucial in managing workloads to reliably deliver customer and enterprise service level agreements predictively. Telemetry, Intelligence and Performance are critical technologies for the growing borderless campus as mobility and cloud applications proliferate and drive networking functions. In our next blog, we will discuss Security as part of our insights and TIPS to Living on the Network Edge.  Watch out for the edge …

# # #

1 Worldwide Global DataSphere IoT device and data forecast (2019-2023), IDC