We’re Building the Future of Data Infrastructure

Products
Company
Support

Archive for the ‘Ethernet Switching’ Category

December 6th, 2021

Marvell and Ingrasys Collaborate to Power Ceph Cluster with EBOF in Data Centers

By Khurram Malik, Senior Manager, Technical Marketing, Marvell

A massive amount of data is being generated at the edge, data center and in the cloud, driving scale out Software-Defined Storage (SDS) which, in turn, is enabling the industry to modernize data centers for large scale deployments. Ceph is an open-source, distributed object storage and massively scalable SDS platform, contributed to by a wide range of major high-performance computing (HPC) and storage vendors. Ceph BlueStore back-end storage removes the Ceph cluster performance bottleneck, allowing users to store objects directly on raw block devices and bypass the file system layer, which is specifically critical in boosting the adoption of NVMe SSDs in the Ceph cluster. Ceph cluster with EBOF provides a scalable, high-performance and cost-optimized solution and is a perfect use case for many HPC applications. Traditional data storage technology leverages special-purpose compute, networking, and storage hardware to optimize performance and requires proprietary software for management and administration. As a result, IT organizations neither scale-out nor make it feasible to deploy petabyte or exabyte data storage from a CAPEX and OPEX perspective.
Ingrasys (subsidiary of Foxconn) is collaborating with Marvell to introduce an Ethernet Bunch of Flash (EBOF) storage solution which truly enables scale-out architecture for data center deployments. EBOF architecture disaggregates storage from compute and provides limitless scalability, better utilization of NVMe SSDs, and deploys single-ported NVMe SSDs in a high-availability configuration on an enclosure level with no single point of failure.

Power Ceph Cluster with EBOF in Data Centers

Ceph is deployed on commodity hardware and built on multi-petabyte storage clusters. It is highly flexible due to its distributed nature. EBOF use in a Ceph cluster enables added storage capacity to scale up and scale out at an optimized cost and facilitates high-bandwidth utilization of SSDs. A typical rack-level Ceph solution includes a networking switch for client, and cluster connectivity; a minimum of 3 monitor nodes per cluster for high availability and resiliency; and Object Storage Daemon (OSD) host for data storage, replication, and data recovery operations. Traditionally, Ceph recommends 3 replicas at a minimum to distribute copies of the data and assure that the copies are stored on different storage nodes for replication, but this results in lower usable capacity and consumes higher bandwidth. Another challenge is that data redundancy and replication are compute-intensive and add significant latency. To overcome all these challenges, Ingrasys has introduced a more efficient Ceph cluster rack developed with management software – Ingrasys Composable Disaggregate Infrastructure (CDI) Director.

(more…)

November 9th, 2021

Network Visibility of 5G Radio Access Networks, Part 2

By Gidi Navon, Senior Principal Architect, Marvell

In part one of this blog, we discussed the ways the Radio Access Network (RAN) is dramatically changing with the introduction of 5G networks and the growing importance of network visibility for mobile network operators. In part two of this blog, we’ll delve into resource monitoring and Open RAN monitoring, and further explain how Marvell’s Prestera® switches equipped with TrackIQ visibility tools can ensure the smooth operation of the network for operators.

Resource monitoring

Monitoring latency is a critical way to identify problems in the network that result in latency increase. However, if measured latency is high, it is already too late, as the radio networks have already started to degrade. The fronthaul network, in particular, is sensitive to even a small increase in latency. Therefore, mobile operators need to ensure the fronthaul segment is below the point of congestion thus achieving extremely low latencies.

Visibility tools for Radio Access Networks need to measure the utilization of ports, making sure links never get congested. More precisely, they need to make sure the rate of the high priority queues carrying the latency sensitive traffic (such as eCPRI user plane data) is well below the allocated resources for such a traffic class.

A common mistake is measuring rates on long intervals. Imagine a traffic scenario over a 100GbE link, as shown in Figure 1, with quiet intervals and busy intervals. Checking the rate over long intervals of seconds will only reveal the average port utilization of 25%, giving the false impression that the network has high margins, without noticing the peak rate. The peak rate, which is close to 100%, can easily lead to egress queue congestion, resulting in buffer buildup and higher latencies.

(more…)

October 18th, 2021

Network Visibility of 5G Radio Access Networks, Part 1

By Gidi Navon, Senior Principal Architect, Marvell

The Radio Access Network (RAN) is dramatically changing with the introduction of 5G networks and this, in turn, is driving home the importance of network visibility. Visibility tools are essential for mobile network operators to guarantee the smooth operation of the network and for providing mission-critical applications to their customers.

In this blog, we will demonstrate how Marvell’s Prestera® switches equipped with TrackIQ visibility tools are evolving to address the unique needs of such networks.

The changing RAN

The RAN is the portion of a mobile system that spans from the cell tower to the mobile core network. Until recently, it was built from vendor-developed interfaces like CPRI (Common Public Radio Interface) and typically delivered as an end-to-end system by one RAN vendor in each contiguous geographic area.

Lately, with the introduction of 5G services, the RAN is undergoing several changes as shown in Figure 1 below:

(more…)

October 12th, 2021

Trends Driving Innovations in Next-Generation Retail Networking

By Amit Thakkar, Senior Director, Product Management, Marvell

The retail segment of the global economy has been one of the hardest hit by the Covid-19 pandemic. Lockdowns shuttered stores for extended periods, while social distancing measures significantly impacted foot traffic in these spaces. Now, as consumer demand has shifted rapidly from physical to virtual stores, the sector is looking to reinvent itself and apply lessons learned from the pandemic. One important piece of knowledge that has surfaced across the retail industry: Investing in critical data infrastructure is a must in order to rapidly accommodate changes in consumption patterns.

Consumers have become much more conscious of the digital experience and, as such, prefer a seamless transition in shopping experiences across both virtual and brick-and-mortar stores. Retailers are revisiting investment in network infrastructure to ensure that the network is “future-proofed” to withstand consumer demand swings. It will be critical to offer new customer-focused, personalized experiences such as cashier-less stores and smart shopping in a manner that is secure, resilient, and high performance. Infrastructure companies will need to be able to bring a complete set of technology options to meet the digital transformation needs of the modern distributed enterprise.

Highlighted below are five emerging technology trends in enterprise networking that are driving innovations in the retail industry to build the modern store experience.

(more…)

October 3rd, 2021

Unleashing 5G Network Performance with Next Generation Ethernet

By Alik Fishman, Director of Product Management, Marvell

Blink your eyes. That’s how fast data will travel from your future 5G-enabled device, over the network to a server and back. Like Formula 1 racing cars needing special tracks for optimal performance, 5G requires agile networking transport infrastructure to unleash its full potential. The 5G radio access network (RAN) requires not only base stations with higher throughputs and soaring speeds but also an advanced transport network, capable of securely delivering fast response times to mobile end points, whatever those might be: phones, cars or IoT devices. Radio site densification and Massive Machine-type Communication (mMTC) technology are rapidly scaling the mobile network to support billions of end devices1, amplifying the key role of network transport to enable instant and reliable connectivity.

With Ethernet being adopted as the most efficient transport technology, carrier routers and switches are tasked to support a variety of use cases over shared infrastructure, driving the growth in Ethernet gear installations. In traditional cellular networks, baseband and radio resources were co-located and dedicated at each cell site. This created significant challenges to support growth and shifts in traffic patterns with available capacity. With the emergence of more flexible centralized architectures such as C-RAN, baseband processing resources are pooled in base station hubs called central units (CUs) and distributed units (DUs) and dynamically shared with remote radio units (RUs). This creates even larger concentrations of traffic to be moved to and from these hubs over the network transport.

(more…)