-->

We’re Building the Future of Data Infrastructure

Products
Company
Support

Archive for the ‘Networking’ Category

July 23rd, 2020

Telemetry: Can You See the Edge?

By Suresh Ravindran, Senior Director, Software Engineering

Telemetry: Can You See the Edge?

So far in our series Living on the Network Edge, we have looked at trends driving Intelligence and Performance to the network edge. In this blog, let’s look into the need for visibility into the network.

As automation trends evolve, the number of connected devices is seeing explosive growth. IDC estimates that there will be 41.6 billion connected IoT devices generating a whopping 79.4 zettabytes of data in 20251. A significant portion of this traffic will be video flows and sensor traffic which will need to be intelligently processed for applications such as personalized user services, inventory management, intrusion prevention and load balancing across a hybrid cloud model. Networking devices will need to be equipped with the ability to intelligently manage processing resources to efficiently handle huge amounts of data flows.

How do you see what you can’t see?

But is your network edgy enough? In order to handle the growth, we’ve seen intelligence pushed to the network edge for application-aware engineering and inferencing applications running in hybrid clouds. In order to keep up with billions of mobile devices using denser applications, we addressed wireless offloading as one method to alleviate the burden on cellular networks. This approach increases the load on edge and enterprise networks with demands for intelligent flow processing capabilities to efficiently utilize the LAN and WAN bandwidth.   With intelligence and performance in place, we also need to address the growing complexity associated with “seeing” how network switching resources are being utilized. Visibility through network telemetry is fundamental to empowering AI-automation, performance, security and troubleshooting. To be proactive and predictive, networks need to be built with switches that look beyond the obvious with intelligent telemetry capabilities.

Intelligent telemetry for effective network visibility

Increased use of analytics and AI for performance monitoring, detection, troubleshooting and response has been ranked a top priority for organizations to achieve their vision of the ideal networkIT professionals leverage telemetry to define workload behaviors requiring network bandwidth timing patterns and whether applications are causing jitter or low-bandwidth issues. In general, telemetry functions have tracked events in hindsight but are now increasingly used to analyze and predict – living on the network edge means monitoring, predicting and managing the anomalies for proactive infrastructure automation and application responses.

An effective telemetry solution also requires network devices to stream a wide range of metadata for network flow and switch resource usage in real time. As streaming telemetry header formats evolve, it is equally important for the switch silicon’s pipeline to have programming abilities which adapt to changes in telemetry tools while performing at line-rate.   

Successfully living at the network edge means detecting and adjusting algorithms in real time. It won’t be enough to move intelligence to the edge and increase the performance for workloads if you can’t see what is happening within the network. Network visibility is crucial in managing workloads to reliably deliver customer and enterprise service level agreements predictively. Telemetry, Intelligence and Performance are critical technologies for the growing borderless campus as mobility and cloud applications proliferate and drive networking functions. In our next blog, we will discuss Security as part of our insights and TIPS to Living on the Network Edge.  Watch out for the edge …

# # #

1 Worldwide Global DataSphere IoT device and data forecast (2019-2023), IDC

July 16th, 2020

The Need for Speed at the Edge

By George Hervey, Principal Architect, Marvell

Marvell Driving Network Intelligence and Processing to the Edge

In the previous TIPS to Living on the Edge, we looked at the trend of driving network intelligence to the edge. With the capacity enabled by the latest wireless networks, like 5G, the infrastructure will enable the development of innovative applications. These applications often employ a high-frequency activity model, for example video or sensors, where the activities are often initiated by the devices themselves generating massive amounts of data moving across the network infrastructure. Cisco’s VNI Forecast Highlights predicts that global business mobile data traffic will grow six-fold from 2017 to 2022, or at an annual growth rate of 42 percent1, requiring a performance upgrade of the network.

Wireless Offload

How do networks with dense wireless connections address the overwhelming bandwidth and connection challenges? One answer is wireless offload. Whether a big box retail store with 1,000 customers or a 60,000-seat stadium or a convention center with 200,000 attendees, the amount of data to be delivered is enormous. The cost to carry the data over wireless has hit a critical inflection point in capacity, driving the need for offload to a wired network. This trend of wireless offload requires higher and higher performance at the network edge enabling users to experience high-performance connectivity and low latency response times they’ve grown to expect.

New Performance Paradigm

Deployment of 5G and Wi-Fi 6 are enabled by advanced wireless access technologies including the use of MIMO and higher frequency spectrum. The capacity being delivered will quickly be consumed by the growing number of devices and new applications. In fact, higher bandwidth at the access layer was a major force behind the definition of Multi-Gig Ethernet. This new performance paradigm will have an impact on all layers of the network, motivating an increase in uplink port speeds to handle the added access bandwidth. Additionally, stacking link capacity will increase to facilitate efficient port deployments and help handle the growth in attached clients.

Network capacity increases enable the adoption of higher bandwidth services, support for emerging real-time applications and an expansion of concurrent active devices on networks. Ironically, the resulting trends and future innovations will continue to drive the need for increased network performance.

Performance is the second part in a series of TIPS that will discuss essential technologies for the growing borderless campus as mobility and cloud applications proliferate and drive networking functions. Telemetry challenges and insights will inspire our next TIPS to Living on the Network Edge.

# # #

1Cisco VNI Complete Forecast Highlights

July 8th, 2020

Driving Network Intelligence and Processing to the Edge

By George Hervey, Principal Architect, Marvell

Marvell Driving Network Intelligence and Processing to the Edge

The mobile phone has become such an essential part of our lives as we move towards more advanced stages of the “always on, always connected” model. Our phones provide instant access to data and communication mediums, and that access influences the decisions we make and ultimately, our behavior.

According to Cisco, global mobile networks will support more than 12 billion mobile devices and IoT connections by 2022.1 And these mobile devices will support a variety of functions. Already, our phones replace gadgets and enable services. Why carry around a wallet when your phone can provide Apple Pay, Google Pay or make an electronic payment? Who needs to carry car keys when your phone can unlock and start your car or open your garage door? Applications now also include live streaming services that enable VR/AR experiences and sharing in real time. While future services and applications seem unlimited to the imagination, they require next-generation data infrastructure to support and facilitate them.

The Need for Intelligence at the Edge
Network connectivity and traffic growth continue to increase as the rate of adoption of new data-intensive applications drive bandwidth requirements and a smarter infrastructure — an infrastructure that can, through intelligence, recognize specific application and infrastructure needs and deliver processing at the edge when necessary. While network speeds increase with advancements of multi-gigabit Ethernet and 400GE backbone connections, the bandwidth available with the latest 5G and Wi-Fi will continue to cause a bottleneck in the backhaul. Edge processing helps prevent the need for moving massive amounts of data across networks. This higher level of network intelligence allows the network to deliver complex software-defined infrastructure management without user intervention, manage inference engines, apply policies, and most importantly, deliver proactive application functionality. This enhances the user experience by offering a near real-time interactive platform with low latency, high reliability and secure infrastructure.

With bandwidth demand growing so much, how do we address it at scale? If we parallel the cloud data centers, we see that one way to scale out and handle the added bandwidth and number of nodes is to add processing to the edge of the network. This was accomplished in data centers through the use of smartNICs to offload complex processing tasks including packet processing, security and virtualization from the servers. A similar approach is being achieved in the carrier networks through the deployment of SD-WAN/uCPE/vCPE appliances placed at the edge to provide the intelligence alongside reduced connectivity costs. However, this approach becomes problematic in enterprise networks where a variety of end point capabilities are needed, and the first location of uniformity takes place at the network’s access layer.

Taking Advantage of Artificial Intelligence (AI)
Yet another challenge is created when legacy methods are used for deploying services in enterprise networks – such as centralized firewalls and authentication servers. With the expected increase in devices accessing the network and more bandwidth needed per device, these legacy constraints can result in bottlenecks. To address these issues, one must truly live on the network edge, pushing out the processing closer to the demand and making it more intelligent. Network OEMs, IT infrastructure owners and service providers will need to take advantage of the new generations of artificial intelligence (AI) and network function offloads at the access layer of the enterprise network.

TIPS to Living on the Network Edge
This is the first in a series providing TIPS about essential technologies that will be needed for the growing borderless campus as mobility and cloud applications proliferate and move networking functions from the core to the edge. Today, we discussed the trend toward expanded Network Intelligence. In Part 2, we will look at the Performance levels needed as we provide more insights and TIPS to Living on the Network Edge.

1 Cisco 2022 Mobile Visual Network Forecast Update

April 2nd, 2018

Understanding Today’s Network Telemetry Requirements

By Tal Mizrahi, Feature Definition Architect, Marvell

There have, in recent years, been fundamental changes to the way in which networks are implemented, as data demands have necessitated a wider breadth of functionality and elevated degrees of operational performance. Accompanying all this is a greater need for accurate measurement of such performance benchmarks in real time, plus in-depth analysis in order to identify and subsequently resolve any underlying issues before they escalate.

The rapidly accelerating speeds and rising levels of complexity that are being exhibited by today’s data networks mean that monitoring activities of this kind are becoming increasingly difficult to execute. Consequently more sophisticated and inherently flexible telemetry mechanisms are now being mandated, particularly for data center and enterprise networks.

A broad spectrum of different options are available when looking to extract telemetry material, whether that be passive monitoring, active measurement, or a hybrid approach. An increasingly common practice is the piggy-backing of telemetry information onto the data packets that are passing through the network. This tactic is being utilized within both in-situ OAM (IOAM) and in-band network telemetry (INT), as well as in an alternate marking performance measurement (AM-PM) context.

At Marvell, our approach is to provide a diverse and versatile toolset through which a wide variety of telemetry approaches can be implemented, rather than being confined to a specific measurement protocol. To learn more about this subject, including longstanding passive and active measurement protocols, and the latest hybrid-based telemetry methodologies, please view the video below and download our white paper.

WHITE PAPER, Network Telemetry Solutions for Data Center and Enterprise Networks

February 22nd, 2018

Marvell to Demonstrate CyberTAN White Box Solution Incorporating the Marvell ARMADA 8040 SoC Running Telco Systems NFVTime Universal CPE OS at Mobile World Congress 2018

By Maen Suleiman, Senior Software Product Line Manager, Marvell

As more workloads are moving to the edge of the network, Marvell continues to advance technology that will enable the communication industry to benefit from the huge potential that network function virtualization (NFV) holds. At this year’s Mobile World Congress (Barcelona, 26th Feb to 1st Mar 2018), Marvell, along with some of its key technology collaborators, will be demonstrating a universal CPE (uCPE) solution that will enable telecom operators, service providers and enterprises to deploy needed virtual network functions (VNFs) to support their customers’ demands.

The ARMADA® 8040 uCPE solution, one of several ARMADA edge computing solutions to be introduced to the market, will be located at the Arm booth (Hall 6, Stand 6E30) and will run Telco Systems NFVTime uCPE operating system (OS) with two deployed off-the-shelf VNFs provided by 6WIND and Trend Micro, respectively, that enable virtual routing and security functionalities.  The CyberTAN white box solution is designed to bring significant improvements in both cost effectiveness and system power efficiency compared to traditional offerings while also maintaining the highest degrees of security.

CyberTAN white box solution incorporating Marvell ARMADA 8040 SoC

 

The CyberTAN white box platform is comprised of several key Marvell technologies that bring an integrated solution designed to enable significant hardware cost savings. The platform incorporates the power-efficient Marvell® ARMADA 8040 system-on-chip (SoC) based on the Arm Cortex®-A72 quad-core processor, with up to 2GHz CPU clock speed, and Marvell E6390x Link Street® Ethernet switch on-board. The Marvell Ethernet switch supports 10G uplink and 8 x 1GbE ports along with integrated PHYs, four of which are auto-media GbE ports (combo ports).

The CyberTAN white box benefits from the Marvell ARMADA 8040 processor’s rich feature set and robust software ecosystem, including:

  • both commercial and industrial grade offerings
  • dual 10G connectivity, 10G Crypto and IPSEC support
  • SBSA compliancy
  • Arm TrustZone support
  • broad software support from the following: UEFI, Linux, DPDK, ODP, OPTEE, Yocto, OpenWrt, CentOS and more

In addition, the uCPE platform supports Mini PCI Express (mPCIe) expansion slots that can enable Marvell advanced 11ac/11ax Wi-Fi or additional wired/wireless connectivity, up to 16GB DDR4 DIMM, 2 x M.2 SATA, one SATA and eMMC options for storage, SD and USB expansion slots for additional storage or other wired/wireless connectivity such as LTE.

At the Arm booth, Telco Systems will demonstrate its NFVTime uCPE operating system on the CyberTAN white box, with zero-touch provisioning (ZTP) feature. NFVTime is an intuitive NFVi-OS that facilitates the entire process of deploying VNFs onto the uCPE, and avoids the complex and frustrating management and orchestration activities normally associated with putting NFV-based services into action. The demonstration will include two main VNFs:

  • A 6WIND virtual router VNF based on 6WIND Turbo Router which provides high performance, ready-to-use virtual routing and firewall functionality; and
  • A Trend Micro security VNF based on Trend Micro’s Virtual Function Network Suite (VNFS) that offers elastic and high-performance network security functions which provide threat defense and enable more effective and faster protection.

Please contact your Marvell sales representative to arrange a meeting at Mobile World Congress or drop by the Arm booth (Hall 6, Stand 6E30) during the conference to see the uCPE solution in action.

October 3rd, 2017

Celebrating 20 Years of Wi-Fi – Part I

By Prabhu Loganathan, Senior Director of Marketing for Connectivity Business Unit, Marvell

You can’t see it, touch it, or hear it – yet Wi-Fi® has had a tremendous impact on the modern world – and will continue to do so. From our home wireless networks, to offices and public spaces, the ubiquity of high speed connectivity without reliance on cables has radically changed the way computing happens. It would not be much of an exaggeration to say that because of ready access to Wi-Fi, we are consequently able to lead better lives – using our laptops, tablets and portable electronics goods in a far more straightforward, simplistic manner with a high degree of mobility, no longer having to worry about a complex tangle of wires tying us down.

Though it may be hard to believe, it is now two decades since the original 802.11 standard was ratified by the IEEE®. This first in a series of blogs will look at the history of Wi-Fi to see how it has overcome numerous technical challenges and evolved into the ultra-fast, highly convenient wireless standard that we know today. We will then go on to discuss what it may look like tomorrow.

Unlicensed Beginnings
While we now think of 802.11 wireless technology as predominantly connecting our personal computing devices and smartphones to the Internet, it was in fact initially invented as a means to connect up humble cash registers. In the late 1980s, NCR Corporation, a maker of retail hardware and point-of-sale (PoS) computer systems, had a big problem. Its customers – department stores and supermarkets – didn’t want to dig up their floors each time they changed their store layout.

A recent ruling that had been made by the FCC, which opened up certain frequency bands as free to use, inspired what would be a game-changing idea. By using wireless connections in the unlicensed spectrum (rather than conventional wireline connections), electronic cash registers and PoS systems could be easily moved around a store without the retailer having to perform major renovation work.

Soon after this, NCR allocated the project to an engineering team out of its Netherlands office. They were set the challenge of creating a wireless communication protocol. These engineers succeeded in developing ‘WaveLAN’, which would be recognized as the precursor to Wi-Fi. Rather than preserving this as a purely proprietary protocol, NCR could see that by establishing it as a standard, the company would be able to position itself as a leader in the wireless connectivity market as it emerged. By 1990, the IEEE 802.11 working group had been formed, based on wireless communication in unlicensed spectra.

Using what were at the time innovative spread spectrum techniques to reduce interference and improve signal integrity in noisy environments, the original incarnation of Wi-Fi was finally formally standardized in 1997. It operated with a throughput of just 2 Mbits/s, but it set the foundations of what was to come.

Wireless Ethernet
Though the 802.11 wireless standard was released in 1997, it didn’t take off immediately. Slow speeds and expensive hardware hampered its mass market appeal for quite a while – but things were destined to change. 10 Mbit/s Ethernet was the networking standard of the day. The IEEE 802.11 working group knew that if they could equal that, they would have a worthy wireless competitor. In 1999, they succeeded, creating 802.11b. This used the same 2.4 GHz ISM frequency band as the original 802.11 wireless standard, but it raised the throughput supported considerably, reaching 11 Mbits/s. Wireless Ethernet was finally a reality.

Soon after 802.11b was established, the IEEE working group also released 802.11a, an even faster standard. Rather than using the increasingly crowded 2.4 GHz band, it ran on the 5 GHz band and offered speeds up to a lofty 54 Mbits/s.

Because it occupied the 5 GHz frequency band, away from the popular (and thus congested) 2.4 GHz band, it had better performance in noisy environments; however, the higher carrier frequency also meant it had reduced range compared to 2.4 GHz wireless connectivity. Thanks to cheaper equipment and better nominal ranges, 802.11b proved to be the most popular wireless standard by far. But, while it was more cost effective than 802.11a, 802.11b still wasn’t at a low enough price bracket for the average consumer. Routers and network adapters would still cost hundreds of dollars.

That all changed following a phone call from Steve Jobs. Apple was launching a new line of computers at that time and wanted to make wireless networking functionality part of it. The terms set were tough – Apple expected to have the cards at a $99 price point, but of course the volumes involved could potentially be huge. Lucent Technologies, which had acquired NCR by this stage, agreed.

While it was a difficult pill to swallow initially, the Apple deal finally put Wi-Fi in the hands of consumers and pushed it into the mainstream. PC makers saw Apple computers beating them to the punch and wanted wireless networking as well. Soon, key PC hardware makers including Dell, Toshiba, HP and IBM were all offering Wi-Fi.

Microsoft also got on the Wi-Fi bandwagon with Windows XP. Working with engineers from Lucent, Microsoft made Wi-Fi connectivity native to the operating system. Users could get wirelessly connected without having to install third party drivers or software. With the release of Windows XP, Wi-Fi was now natively supported on millions of computers worldwide – it had officially made it into the ‘big time’.

This blog post is the first in a series that charts the eventful history of Wi-Fi. The second part, which is coming soon, will bring things up to date and look at current Wi-Fi implementations.

 

July 17th, 2017

Rightsizing Ethernet

By George Hervey, Principal Architect, Marvell

Implementation of cloud infrastructure is occurring at a phenomenal rate, outpacing Moore’s Law. Annual growth is believed to be 30x and as much 100x in some cases. In order to keep up, cloud data centers are having to scale out massively, with hundreds, or even thousands of servers becoming a common sight.

At this scale, networking becomes a serious challenge. More and more switches are required, thereby increasing capital costs, as well as management complexity. To tackle the rising expense issues, network disaggregation has become an increasingly popular approach. By separating the switch hardware from the software that runs on it, vendor lock-in is reduced or even eliminated. OEM hardware could be used with software developed in-house, or from third party vendors, so that cost savings can be realized.

Though network disaggregation has tackled the immediate problem of hefty capital expenditures, it must be recognized that operating expenditures are still high. The number of managed switches basically stays the same. To reduce operating costs, the issue of network complexity has to also be tackled.

Network Disaggregation
Almost every application we use today, whether at home or in the work environment, connects to the cloud in some way. Our email providers, mobile apps, company websites, virtualized desktops and servers, all run on servers in the cloud.

For these cloud service providers, this incredible growth has been both a blessing and a challenge. As demand increases, Moore’s law has struggled to keep up. Scaling data centers today involves scaling out – buying more compute and storage capacity, and subsequently investing in the networking to connect it all. The cost and complexity of managing everything can quickly add up.

Until recently, networking hardware and software had often been tied together. Buying a switch, router or firewall from one vendor would require you to run their software on it as well. Larger cloud service providers saw an opportunity. These players often had no shortage of skilled software engineers. At the massive scales they ran at, they found that buying commodity networking hardware and then running their own software on it would save them a great deal in terms of Capex.

This disaggregation of the software from the hardware may have been financially attractive, however it did nothing to address the complexity of the network infrastructure. There was still a great deal of room to optimize further.

802.1BR
Today’s cloud data centers rely on a layered architecture, often in a fat-tree or leaf-spine structural arrangement. Rows of racks, each with top-of-rack (ToR) switches, are then connected to upstream switches on the network spine. The ToR switches are, in fact, performing simple aggregation of network traffic. Using relatively complex, energy consuming switches for this task results in a significant capital expense, as well as management costs and no shortage of headaches.

Through the port extension approach, outlined within the IEEE 802.1BR standard, the aim has been to streamline this architecture. By replacing ToR switches with port extenders, port connectivity is extended directly from the rack to the upstream. Management is consolidated to the fewer number of switches which are located at the upper layer network spine, eliminating the dozens or possibly hundreds of switches at the rack level.

The reduction in switch management complexity of the port extender approach has been widely recognized, and various network switches on the market now comply with the 802.1BR standard. However, not all the benefits of this standard have actually been realized.

The Next Step in Network Disaggregation
Though many of the port extenders on the market today fulfill 802.1BR functionality, they do so using legacy components. Instead of being optimized for 802.1BR itself, they rely on traditional switches. This, as a consequence impacts upon the potential cost and power benefits that the new architecture offers.

Designed from the ground up for 802.1BR, Marvell’s Passive Intelligent Port Extender (PIPE) offering is specifically optimized for this architecture. PIPE is interoperable with 802.1BR compliant upstream bridge switches from all the industry’s leading OEMs. It enables fan-less, cost efficient port extenders to be deployed, which thereby provide upfront savings as well as ongoing operational savings for cloud data centers. Power consumption is lowered and switch management complexity is reduced by an order of magnitude

The first wave in network disaggregation was separating switch software from the hardware that it ran on. 802.1BR’s port extender architecture is bringing about the second wave, where ports are decoupled from the switches which manage them. The modular approach to networking discussed here will result in lower costs, reduced energy consumption and greatly simplified network management.