Marvell Blog

Featuring technology ideas and solutions worth sharing

Marvell

Latest Articles

November 5th, 2018

Enhanced Wireless Microcontroller Enables Affordable Design

By Sree Durbha, Head of Smart-Connected Business, Marvell Semiconductor

Today, we are at the peak of technology product availability with the releases of the new iPhone models, Alexa enabled devices and more. In the coming days, there will be numerous international consumer OEMs preparing new offerings as we approach the holiday selling season. Along with the smartphones, voice assistant enabled smart speakers and deep learning wireless security cameras, many devices and appliances are increasingly geared toward automating the home, the office and the factory. These devices are powered by application microcontroller units (MCUs) with embedded wireless connectivity to help users to remotely control and operate them via phone apps, voice or even through mere presence. This is part of an industry trend of pushing intelligence into everyday things. According to analyst firm Techno Systems Research1, this chipset market grew by more than 60% over the course of the last year and is likely to continue this high rate of growth.

The democratization of wireless connectivity intellectual property and the continuing shift of semiconductor design and development to low cost regions is helping give rise to new industry players. In order to help customers differentiate in this highly competitive market, Marvell has announced the 88MW320/322 low-power Wi-Fi microcontroller SoC. This chipset is 100% pin-compatible and software compatible with the existing 88MW300/302 based designs. Although the newly released microcontroller is cost-optimized, there are several key hardware and software enhancements in this chipset.

Support for extended industrial temperature operation, from -400 C through to 1050 C has been added. Unlike its predecessor, the 88MW320/322 can be implemented into more challenging application areas – such as LED lighting and industrial automation. No RF specific changes have been made within the silicon, so the minimum and maximum RF performance parameters remain the same as before. However, other fixes made have helped improve typical RF performance as reported by some of our customers when evaluating samples. Since there was no change in form, fit or function, the external RF interface remains the same as well. This enables customers to leverage existing 88MW300/302 module and device level regulatory certification on 88MW320/322. A hardware security feature has also been incorporated that allows customers to uniquely tie the chipset to the firmware running on it. This helps prevent counterfeit software to run on the chipset.

This chipset is supported by the industry-leading Marvell EZ-Connect SDK for Apple’s new Advanced Development Kit (ADK) and Release 13 HomeKit Accessory Protocol SDK (R13 HAPSDK) with software-based authentication (SoftAuth), Amazon’s AWS IoT and other third-party cloud platforms. The Apple SoftAuth support now allows customers to avoid the cost and hassle of adding the MFi authentication chip, which was previously required to get HomeKit certification. On the applications side, we have added support for the Alexa Voice Services library. With MP3 decoder and OAUTH2 modules integrated on our SDK, our solution now allows customers to add an external audio-codec chipset to offer native voice command translation for basic product control functions.

As previously announced, we continue to partner with Dialog Semiconductor to offer support for BLE with shared antenna managed coexistence software with our Wi-Fi on 88MW320/322. Several of our module vendor partners have announced support for this chipset in standalone and Wi-Fi + BLE combo configurations. You can find a complete list of modules supporting this chipset on the Marvell Wireless Microcontrollers page.

The 88MW320/322 has been sampling to customers for a few months now and is currently shipping. The product comes in 68-pin QFN package (88MW320) and 88-pin QFN package (88MW322) formats. It is available in commercial, extended, industrial and extended industrial temperature ranges in both tray and tape and reel configurations.

Watch this space for future announcements as we extend the availability of Marvell’s solutions for the smart home, office and factory to our customers through our catalog partners. The goal is to enable our wireless microcontroller solutions with easy to install one-click software that allows smaller customers to use our partner reference designs to develop their form factor proof of concept designs with hardware, firmware, middleware, cloud connectivity software, collateral and application support from a single source. This will free up their resources so that they can focus on what is most important to them – which is to work on application software and differentiation.

The best is yet to come. As the industry demands solutions with higher levels of integration at ever lower power to allow for wireless products with several months and even years of battery life, you can count on Marvell to innovate to help meet customer needs. For example, the 802.11ax standard specification is not just for high efficiency and high throughput designs, it also offers provisions for low power, long battery life designs. 20MHz only channel operation in the 5GHz band and features such as target wake time (TWT), which helps extend the sleep cycle of devices; dual sub-carrier modulation (DCM), which helps extend the wireless range; uplink and downlink OFDMA, all contribute to make the next generation of devices worth waiting for.

1. 2017 Wireless Connectivity Market Analysis, August, 2018

October 23rd, 2018

Marvell Highlights Leadership in Infrastructure Semiconductor Solutions at Investor Day and Nasdaq

By Marvell, PR Team

Marvell shared its mission and focus on driving the core technology to enable the global network infrastructure at its recent investor day. This was followed up with an appearance at Nasdaq, where Matt Murphy, president and CEO of the company, rang the bell to open the stock exchange.

 

At both of these events in New York City, Marvell shared how far the company has come, where it was going, and reaffirmed its mission: To provide semiconductor solutions that process, move, store and secure the world’s data faster and more reliably than anyone else.

The world has become more connected and intelligent than ever, and the global network has also evolved at an astonishing rate. It’s imperative that the semiconductor industry advances even quicker to keep up with these new technology trends and stay relevant. Marvell recognizes that its customers, at the core or on the edge, face the daunting challenge of delivering solutions for this ever-changing world – today.

With both the breadth and depth of technology expertise, Marvell offers the critical technology elements — storage, Ethernet, Arm® processors, security processors and wireless connectivity — to drive innovation in the industry.  With the Cavium acquisition, the company retains its strong and stable foothold while competing more aggressively and innovating faster to serve customers better.

For Marvell the future isn’t a distant challenge: it is here with us now, evolving at an accelerated pace. Marvell is enabling new technologies such as 5G, disrupting new Flash platform solutions for the data center, revolutionizing the in-car network, and developing new compute architectures for artificial intelligence, to name a few.

Bringing the most complete infrastructure portfolio of any semiconductor company, Marvell is more than ready to continue on its amazing journey, and have its customers and partners alongside it on the cutting-edge—today, tomorrow and beyond.

 

October 18th, 2018

Looking to Converge? HPE Launches Next Gen Marvell FastLinQ CNAs

By Todd Owens, Technical Marketing Manager

Converging network and storage I/O onto a single wire can drive significant cost reductions in the small to mid-size data center by reducing the number of connections required. Fewer adapter ports means fewer cables, optics and switch ports consumed, all of which reduce OPEX in the data center. Customers can take advantage of converged I/O by deploying Converged Network Adapters (CNA) that provide not only networking connectivity, but also provide storage offloads for iSCSI and FCoE as well.

Just recently, HPE has introduced two new CNAs based on Marvell® FastLinQ® 41000 Series technology. The HPE StoreFabric CN1200R 10GBASE-T Converged Network Adapter and HPE StoreFabric CN1300R 10/25Gb Converged Network Adapter are the latest additions in HPE’s CNA portfolio. These are the only HPE StoreFabric CNAs to also support Remote Direct Memory Access (RDMA) technology (concurrently with storage offloads).

As we all know, the amount of data being generated continues to increase and that data needs to be stored somewhere. Recently, we are seeing an increase in the number of iSCSI connected storage devices in mid-market, branch and campus environments. iSCSI is great for these environments because it is easy to deploy, it can run on standard Ethernet, and there are a variety of new iSCSI storage offerings available, like Nimble and MSA all flash storage arrays (AFAs).

One challenge with iSCSI is the load it puts on the Server CPU for storage traffic processing when using software initiators –  a common approach to storage connectivity. To combat this, Storage Administrators can turn to CNAs with full iSCSI protocol offload. Offloading transfers the burden of processing the storage I/O from the CPU to the adapter.

Figure 1: Benefits of Adapter Offloads

As Figure 1 shows, Marvell driven testing shows that CPU utilization using H/W offload in FastLinQ 10/25GbE adapters can reduce CPU utilization by as much as 50% compared to an Ethernet NIC with software initiators. This means less burden on the CPU, allowing you to add more virtual machines per server and potentially reducing the number of physical servers required. A small item like an intelligent I/O adapter from Marvell can provide a significant TCO savings.

Another challenge has been the latency associated with Ethernet connectivity. This can now be addressed with RDMA technology. iWARP, RDMA over Converged Ethernet (RoCE) and iSCSI over Ethernet with RDMA (iSER) all allow for I/O transactions to be performed directly from the memory to the adapter, bypassing the software kernel in the user space of the O/S. This speeds transactions and reduces the overall I/O latency. The result is better performance and faster applications.

The new HPE StoreFabric CNAs become the ideal devices for converging network and iSCSI storage traffic for HPE ProLiant and Apollo customers. The HPE StoreFabric CN1300R 10/25GbE CNA supports plenty of bandwidth that can be allocated to both the network and storage traffic. In addition, with support for Universal RDMA (support for both iWARP and RoCE) as well as iSER, this adapter provides significantly lower latency than standard network adapters for both the network and storage traffic.

The HPE StoreFabric 1300R also supports a technology Marvell calls SmartAN™, which allows the adapter to automatically configure itself when transitioning between 10GbE and 25GbE networks. This is key because at 25GbE speeds, Forward Error Correction (FEC) can be required, depending on the cabling used. To make things more complex, there are two different types of FEC that can be implemented. To eliminate all the complexity, SmartAN automatically configures the adapter to match the FEC, cabling and switch settings for either 10GbE or 25GbE connections, with no user intervention required.

When budget is the key concern, the HPE StoreFabric CN1200R is the perfect choice. Supporting 10GBASE-T connectivity, this adapter connects to existing CAT6A copper cabling using RJ-45 connections. This eliminates the need for more expensive DAC cables or optical transceivers. The StoreFabric CN1200R also supports RDMA protocols (iWARP, RoCE and iSER) for lower overall latency.

Why converge though? It’s all about a tradeoff between cost and performance. If we do the math to compare the cost of deploying separate LAN and storage networks versus a converged network, we can see that converging I/O greatly reduces the complexity of the infrastructure and can reduce acquisition costs by half. There are additional long-term cost savings also, associated with managing one network versus two.

Figure 2: Eight Server Network Infrastructure Comparison

In this pricing scenario, we are looking at eight servers connecting to separate LAN and SAN environments versus connecting to a single converged environment as shown in figure 2.

Table 1: LAN/SAN versus Converged Infrastructure Price Comparison

The converged environment price is 55% lower than the separate network approach. The downside is the potential storage performance impact of moving from a Fibre Channel SAN in the separate network environment to a converged iSCSI environment. The iSCSI performance can be increased by implementing a lossless Ethernet environment using Data Center Bridging and Priority Flow Control along with RoCE RDMA. This does add significant networking complexity but will improve the iSCSI performance by reducing the number of interrupts for storage traffic.

One additional scenario for these new adapters is in Hyper-Converged Infrastructure (HCI) implementations. With HCI, software defined storage is used. This means storage within the servers is shared across the network. Common implementations include Windows Storage Spaces Direct (S2D) and VMware vSAN Ready Node deployments. Both the HPE StoreFabric CN1200R BASE-T and CN1300R 10/25GbE CNAs are certified for use in either of these HCI implementations.

Figure 3: FastLinQ Technology Certified for Microsoft WSSD and VMware vSAN Ready Node

In summary, the new CNAs from the HPE StoreFabric group provide high performance, low cost connectivity for converged environments. With support for 10Gb and 25Gb Ethernet bandwidths, iWARP and RoCE RDMA and the ability to automatically negotiate changes between 10GbE and 25GbE connections with SmartAN™ technology, these are the ideal I/O connectivity options for small to mid-size server and storage networks.  To get the most out over your server investments, choose Marvell FastLinQ Ethernet I/O technology which is engineered from the start with performance, total cost of ownership, flexibility and scalability in mind.

For more information on converged networking, contact one our HPE experts in the field to talk through your requirements. Just use the HPE Contact Information link on our HPE Microsite at www.marvell.com/hpe.

October 17th, 2018

Marvell Demonstrates Edge Computing Powered by AWS Greengrass at Arm TechCon 2018

By Maen Suleiman, Senior Software Product Line Manager

and Gorka Garcia, Senior Lead Engineer, Marvell Semiconductor, Inc.

Thanks to the respective merits of its ARMADA® and OCTEON TX® multi-core processor offerings, Marvell is in a prime position to address a broad spectrum of demanding applications situated at the edge of the network. These applications can serve a multitude of markets that include small business, industrial and enterprise, and will require special technologies like efficient packet processing, machine learning and connectivity to the cloud. As part of its collaboration with Amazon Web Services® (AWS), Marvell will be illustrating the capabilities of edge computing applications through an exciting new demo that will be shown to attendees at Arm TechCon – which is being held at the San Jose Convention Center, October 16th-18th.

This demo takes the form of an automated parking lot. An ARMADA processor-based Marvell MACCHIATObin® community board, which integrates the AWS Greengrass® software, is used to serve as an edge compute node. The Marvell edge compute node receives video streams from two cameras that are placed at the entry gate and exit of the parking lot. The ARMADA processor-based compute node runs AWS Greengrass Core; executes two Lambda functions to process the incoming video streams and identify the vehicles entering the garage through their license plates; and subsequently checks whether the vehicles are authorized or unauthorized to enter the parking lot.

The first Lambda function will be running Automatic License Plate Recognition (OpenALPR) software and it obtains the license plate number and delivers it together with the gate ID (Entry/Exit) to a Lambda function running on the AWS® cloud that will access a DynamoDB® database. The cloud Lambda function will be responsible for reading the DynamoDB whitelist database and determines if the license plate belongs to an authorized car. This information will be sent back to a second Lambda function on the edge of the network, on the MACCHIATObin board, responsible for managing the parking lot capacity and opening or closing the gate. This Lambda function will be logging the activity in the edge to the AWS Cloud Elasticsearch® service, which works as a backend for Kibana®, an open source data visualization engine. Kibana will enable a remote operative to have direct access to information concerning parking lot occupancy, entry gate status and exit gate status.  Furthermore, the AWS Cognito service authenticates users for access to Kibana.

 

 

After the AWS Cloud Lambda function sends the verdict (allowed/denied) to the second Lambda function running on the MACCHIATObin board, this MACCHIATObin Lambda function will be responsible for communicating with the gate controller, which is comprised of a Marvell ESPRESSObin® board, and is used to open/close the gateway as required.

The ESPRESSObin board runs as an AWS Greengrass IoT device that will be responsible for opening the gate according to the information received from the MACCHIATObin board’s second Lambda function.

This demo showcases the capabilities to run a machine learning algorithm using AWS Lambda at the edge to make the identification process extremely fast. This is possible through the high performance, low-power Marvell OCTEON TX and ARMADA multi-core processors. Marvell infrastructure processors’ capabilities have the potential to cover a range of higher-end networking and security applications that can benefit from the maturity of the Arm® ecosystem and the ability to run machine learning in a multi-core environment at the edge of the network.

Those visiting the Arm Infrastructure Pavilion (Booth# 216) at Arm TechCon (San Jose Convention Center, October 16th-18th) will be able to see the Marvell Edge Computing demo powered by AWS Greengrass.

For information on how to enable AWS Greengrass on Marvell MACCHIATObin and Marvell ESPRESSObin community boards, please visit http://wiki.macchiatobin.net/tiki-index.php?page=AWS+Greengrass+on+MACCHIATObin and http://wiki.espressobin.net/tiki-index.php?page=AWS+Greengrass+on+ESPRESSObin.

 

 

August 3rd, 2018

Infrastructure Powerhouse: Marvell and Cavium become one!

By Todd Owens, Technical Marketing Manager

Marvell’s acquisition of Cavium closed on July 6th, 2018 and the integration is well under way. Cavium becomes a wholly-owned subsidiary of Marvell.  Our combined mission as Marvell is to develop and deliver semiconductor solutions that process, move, store and secure the world’s data faster and more reliably than anyone else. The combination of the two companies makes for an infrastructure powerhouse, serving a variety of customers in the Cloud/Data Center, Enterprise/Campus, Service Providers, SMB/SOHO, Industrial and Automotive industries.

For our business with HPE, the first thing you need to know is it is business as usual. The folks you engaged with on I/O and processor technology we provided to HPE before the acquisition are the same you engage with now.  Marvell is a leading provider of storage technologies, including ultra-fast read channels, high performance processors and transceivers that are found in the vast majority of hard disk drive (HDD) and solid-state drive (SDD) modules used in HPE ProLiant and HPE Storage products today.

Our industry leading QLogic® 8/16/32Gb Fibre Channel and FastLinQ® 10/20/25/50Gb Ethernet I/O technology will continue to provide connectivity for HPE Server and Storage solutions. The focus for these products will continue to be the intelligent I/O of choice for HPE, with the performance, flexibility, and reliability we are known for.

Marvell’s Portfolio of FastLinQ Ethernet and QLogic Fibre Channel I/O Adapters

We will continue to provide ThunderX2® Arm® processor technology for HPC servers like the HPE Apollo 70 for high-performance compute applications. We will also continue to provide Ethernet networking technology that is embedded into HPE Servers and Storage today and Marvell ASIC technology used for the iLO5 baseboard management controller (BMC) in all HPE ProLiant and HPE Synergy Gen10 servers.

iLO 5 for HPE ProLiant Gen10 is deployed on Marvell SoCs

That sounds great, but what’s going to change over time?
The combined company now has a much broader portfolio of technology to help HPE deliver best-in-class solutions at the edge, in the network and in the data center.

Marvell has industry-leading switching technology from 1GbE to 100GbE and beyond. This enables us to deliver connectivity from the IoT edge, to the data center and the cloud. Our Intelligent NIC technology provides compression, encryption and more to enable customers to analyze network traffic faster and more intelligently than ever before. Our security solutions and enhanced SoC and Processor capabilities will help our HPE design-in team collaborate with HPE to innovate next-generation server and storage solutions.

Down the road, you’ll see a shift in our branding and where you access info over time as well. While our product-specific brands, like ThunderX2 for Arm, or QLogic for Fibre Channel and FastLinQ for Ethernet will remain, many things will transition from Cavium to Marvell. Our web-based resources will start to change as will our email addresses. For example, you can now access our HPE Microsite at www.marvell.com/hpe . Soon, you’ll be able to contact us at “hpesolutions@marvell.com” as well. The collateral you leverage today will be updated over time. In fact, this has already started with updates to our HPE-specific Line Card, our HPE Ethernet Quick Reference Guide, our Fibre Channel Quick Reference Guides and our presentation materials. Updates will continue over the next few months.

In summary, we are bigger and better. We are one team that is more focused than ever to help HPE, their partners and customers thrive with world-class technology we can bring to bear. If you want to learn more, engage with us today. Our field contact details are here. We are all excited for this new beginning to make “I/O and Infrastructure Matter!” each and every day.

June 29th, 2018

Marvell Helps to Bring HD Video Capabilities to New Entry-Level Drone

By Sree Durbha, Head of Smart-Connected Business, Marvell Semiconductor

The consumer drone market has expanded greatly over the last few years, with almost 3 million units shipped during 2017. This upward trend is likely to continue. Analyst firm Statista forecasts that the commercial drone business will be worth $6.4 billion annually by 2020, while Global Market Insights has predicted that the worldwide drone market will grow to $17 billion (with the consumer category accounting for $9 billion of that). As new products are continually being introduced into what is already an acutely overcrowded marketplace, a differentiated offering is therefore critical to a successful product.

One of the newest and most exciting entrants into this crowded drone market, Tello, features functionality that sets it apart from rival offerings. Tello is manufactured by Shenzhen-based start-up Ryze Tech, a subsidiary of well-known brand DJI, which is the world’s largest producer of drones and unmanned aerial vehicles (UAVs). With a 13 minute runtime, plus a flight distance of up to 100 meters, this is an extremely maneuverable and compact quadcopter drone. It weighs just 80 grams and can fit into the palm of a typical teenager’s hand (with dimensions of 98 x 92.5 x 41 millimeters). The two main goals of the Tello are fun and education. To that end, a smartphone App-based control provides a fun user interface for everyone, including young people, to play with. The educational goal is met through an easy to program visual layout that allows users to write their own code using the comprehensive software development kit (SDK) included in the package. What really distinguishes Tello from other drones, however, is the breadth of its imaging capabilities – and this is where engaging with Marvell has proven pivotal.

Tello’s original drone design requirement called for livestreaming 720p MP4 format video, using its 5 Megapixel image sensor, back to the user’s smartphone or tablet even while traveling at its maximum speed of 8 meters/second. This called for interoperability testing with a broad array of smartphone and tablet models. Due to its small size, conserving battery life would be a key requirement, which meant ultra-low power consumption by Wi-Fi®. Underlying all of this was the singular requirement for a strong wireless connection to be maintained at all times. Finally, as is always the case, Wi-Fi would need to fit in the low bill of materials for the product.

Initial discussions between technical teams at Ryze and Marvell revealed a perfect match between the features offered on the Marvell® 1×1 802.11n single-band Wi-Fi system-on-chip (SoC) and the Wi-Fi requirements for the Tello drone project. This chip was already widely adopted in the market and established itself as a proven solution for various customer applications, including video transmission in IP cameras, mobile routers, IoT gateways etc. Ryze chose this chipset, banking on its reliability while transmitting high-definition video over the air, exceptional RF performance over range while offering ultra-low power operation, all at a competitive price point.

Marvell’s Wi-Fi SoC is a highly integrated, single-band (2.4GHz) IC that delivers IEEE® 802.11b/g/n operation in a single spatial stream (1 SS) configuration. It incorporates a power amplifier (PA), a low noise amplifier (LNA) and a transmit/receive switch. Quality of Service (QoS) is guaranteed through the 802.11e standard implementation. The Wi-Fi SoC’s compliance with the 802.11i security protocol, plus built-in wired equivalent privacy (WEP) algorithms, enable 128-bit encryption of transmitted data, thereby protecting the data from being intercepted by third parties. All of these hardware features are supported by Marvell’s robust Wi-Fi software, which includes a small footprint and full featured Wi-Fi firmware tied in with the hardware level features. Specific features such as infrastructure mode operation were developed to enable the functionality desired by Ryze for the Tello.

Marvell’s industry-leading Wi-Fi technology has enabled an exciting new user experience in the Tello, at a level of sophistication that previously would only have been seen in expensive, professional-grade equipment. In order to bring this professional quality experience to an entry-level drone model meant that significant power, performance and cost barriers were overcome. As we enter the 802.11ax era of Wi-Fi industry transition, expect Marvell to launch first-to-market, ever more envelope-pushing, technological advances such as uplink OFDMA.

 

 

June 7th, 2018

Versatile New Ethernet Switch Simultaneously Addresses Multiple Industry Sectors

By Ran Gu, Marketing Director of Switching Product Line, Marvell

Due to ongoing technological progression and underlying market dynamics, Gigabit Ethernet (GbE) technology with 10 Gigabit uplink speeds is starting to proliferate into the networking infrastructure across a multitude of different applications where elevated levels of connectivity are needed: SMB switch hardware, industrial switching hardware, SOHO routers, enterprise gateways and uCPEs, to name a few. The new Marvell® Link Street™ 88E6393X, which has a broad array of functionality, scalability and cost-effectiveness, provides a compelling switch IC solution with the scope to serve multiple industry sectors.

The 88E6393X switch IC incorporates both 1000BASE-T PHY and 10 Gbps fiber port capabilities, while requiring only 60% of the power budget necessitated by competing solutions. Despite its compact package, this new switch IC offers 8 triple speed (10/100/1000) Ethernet ports, plus 3 XFI/SFI ports, and has a built-in 200 MHz microprocessor. Its SFI support means that the switch can connect to a fiber module without the need to include an external PHY – thereby saving space and bill-of-materials (BoM) costs, as well as simplifying the design. It complies with the IEEE 802.1BR port extension standard and can also play a pivotal role in lowering the management overhead and keeping operational expenditures (OPEX) in check. In addition, it includes L3 routing support for IP forwarding purposes.

Adherence to the latest time sensitive networking (TSN) protocols (such as 802.1AS, 802.1Qat, 802.1Qav and 802.1Qbv) enables delivery of the low latency operation mandated by industrial networks. The 256 entry ternary content-addressable memory (TCAM) allows for real-time, deep packet inspection (DPI) and policing of the data content being transported over the network (with access control and policy control lists being referenced). The denial of service (DoS) prevention mechanism is able to detect illegal packets and mitigate the security threat of DoS attacks.

The 88E6393X device, working in conjunction with a high performance ARMADA® network processing system-on-chip (SoC), can offload some of the packet processing activities so that the CPU’s bandwidth can be better focused on higher level activities. Data integrity is upheld, thanks to the quality of service (QoS) support across 8 traffic classes. In addition, the switch IC presents a scalable solution. The 10 Gbps interfaces provide non-blocking uplink to make it possible to cascade several units together, thus creating higher port count switches (16, 24, etc.).

This new product release features a combination of small footprint, lower power consumption, extensive security and inherent flexibility to bring a highly effective switch IC solution for the SMB, enterprise, industrial and uCPE space.